entropy
estimates the Shannon entropy H of the random variable Y
from the corresponding observed counts y
.
freqs
estimates bin frequencies from the counts y
.
entropy(y, lambda.freqs, method=c("ML", "MM", "Jeffreys", "Laplace", "SG",
"minimax", "CS", "NSB", "shrink"), unit=c("log", "log2", "log10"), verbose=TRUE, ...)
freqs(y, lambda.freqs, method=c("ML", "MM", "Jeffreys", "Laplace", "SG",
"minimax", "CS", "NSB", "shrink"), verbose=TRUE)
entropy
returns an estimate of the Shannon entropy.
freqs
returns a vector with estimated bin frequencies (if available).
vector of counts.
the method employed to estimate entropy (see Details).
the unit in which entropy is measured.
The default is "nats" (natural units). For
computing entropy in "bits" set unit="log2"
.
shrinkage intensity (for "shrink" option).
verbose option (for "shrink" option).
option passed on to entropy.NSB
.
Korbinian Strimmer (https://strimmerlab.github.io).
The entropy
function allows to estimate entropy from observed counts by a variety
of methods:
method="ML"
:maximum likelihood, see entropy.empirical
method="MM"
:bias-corrected maximum likelihood, see entropy.MillerMadow
method="Jeffreys"
:entropy.Dirichlet
with a=1/2
method="Laplace"
:entropy.Dirichlet
with a=1
method="SG"
:entropy.Dirichlet
with a=a=1/length(y)
method="minimax"
:entropy.Dirichlet
with a=sqrt(sum(y))/length(y
method="CS"
:see entropy.ChaoShen
method="NSB"
:see entropy.NSB
method="shrink"
:see entropy.shrink
The freqs
function estimates the underlying bin frequencies. Note that
estimated frequencies are not
available for method="MM"
, method="CS"
and method="NSB"
. In these
instances a vector containing NAs is returned.
entropy-package
, discretize
.
# load entropy library
library("entropy")
# observed counts for each bin
y = c(4, 2, 3, 0, 2, 4, 0, 0, 2, 1, 1)
entropy(y, method="ML")
entropy(y, method="MM")
entropy(y, method="Jeffreys")
entropy(y, method="Laplace")
entropy(y, method="SG")
entropy(y, method="minimax")
entropy(y, method="CS")
#entropy(y, method="NSB")
entropy(y, method="shrink")
Run the code above in your browser using DataLab