diyar
Installation
# Install the latest CRAN release
install.packages("diyar")
# Or, install the development version from GitHub
install.packages("devtools")
devtools::install_github("OlisaNsonwu/diyar")
Overview
diyar
is an R
package for linking records with shared
characteristics. The linked records represent an entity, which depending
on the context of the analysis can be unique patients, infection
episodes, overlapping periods of care, clusters or other occurrences as
defined by a case definition. This makes it useful in ordinarily complex
analyses such as record linkage,
contact or network analyses e.t.c.
The main functions are links()
, episodes()
and partitions()
. They
are flexible in regards to how they compare records, as well as what are
considered matches. Their functionality can sometimes overlap however,
each is better suited to particular use cases:
links()
- link records with no relevance to an index record. For example, deterministic record linkageepisodes()
- link records in relation to an index record. For example, contact and network analysis.partitions()
- link records in relation to a fixed interval.
links()
Key features;
- multi-stage record linkage. Here, multiple linkage criteria are assessed in a specified order of priority.
library(diyar)
data(missing_staff_id)
dfr_stages <- missing_staff_id[c("age", "hair_colour", "branch_office")]
priority_order_1 <- c("hair_colour", "branch_office")
priority_order_2 <- c("branch_office", "hair_colour")
dfr_stages$id.1 <- links(criteria = as.list(dfr_stages[priority_order_1]))
dfr_stages$id.2 <- links(criteria = as.list(dfr_stages[priority_order_2]))
- create and use complex rules for record matching. This is done with a
sub_criteria()
.
sub.cri.1 <- sub_criteria(
hair.color = dfr_stages$hair_colour,
age = dfr_stages$age,
match_funcs = c(
"exact" = exact_match,
"age.range" = range_match)
)
last_word_wf <- function(x) tolower(gsub("^.* ", "", x))
last_word_cmp <- function(x, y) last_word_wf(x) == last_word_wf(y)
not_equal <- function(x, y) x != y
sub.cri.2 <- sub_criteria(
dfr_stages$branch_office,
dfr_stages$age,
match_funcs = c(
"last.word" = last_word_cmp,
"not.equal" = not_equal)
)
sub.cri.3 <- sub_criteria(sub.cri.1, sub.cri.2, operator = "and")
sub.cri.1
#> {
#> exact(hair.color) OR age.range(age)
#> }
sub.cri.2
#> {
#> last.word(Republic of Ghana,France,NA ...) OR not.equal(30,30,30 ...)
#> }
sub.cri.3
#> {
#> {
#> exact(hair.color) OR age.range(age)
#> } AND
#> {
#> last.word(Republic of Ghana,France,NA ...) OR not.equal(30,30,30 ...)
#> }
#> }
dfr_stages$id.3 <- links(
criteria = "place_holder",
sub_criteria = list("cr1" = sub.cri.3)
)
dfr_stages
#> age hair_colour branch_office id.1 id.2 id.3
#> 1 30 Brown Republic of Ghana P.1 (CRI 001) P.1 (CRI 001) P.1 (CRI 001)
#> 2 30 Teal France P.4 (CRI 003) P.2 (CRI 001) P.2 (CRI 001)
#> 3 30 <NA> <NA> P.3 (No hits) P.3 (No hits) P.3 (No hits)
#> 4 30 Green <NA> P.4 (CRI 001) P.2 (CRI 003) P.4 (No hits)
#> 5 30 Green France P.4 (CRI 001) P.2 (CRI 001) P.2 (CRI 001)
#> 6 30 Dark brown Ghana P.6 (No hits) P.6 (No hits) P.1 (CRI 001)
#> 7 30 Brown Republic of Ghana P.1 (CRI 001) P.1 (CRI 001) P.1 (CRI 001)
There are variations of links()
like links_wf_probabilistic()
and
links_af_probabilistic()
for specific use cases such as probabilistic
record linkage.
episodes()
Key features;
- link records within a specified period from an index record.
dfr_2 <- data.frame(date = as.Date("2020-01-01") + c(1:5, 10:15, 20:25))
dfr_2$id.1 <- episodes(
date = dfr_2$date, case_length = 2,
episodes_max = 1)
- change the index record.
dfr_2$pref <- c(rep(2, 8), 1, rep(2, 8))
dfr_2$id.2 <- episodes(
date = dfr_2$date, case_length = number_line(-2, 2),
episodes_max = 1,
custom_sort = dfr_2$pref)
- add a recurrence period
dfr_2$id.3 <- episodes(
date = dfr_2$date, case_length = number_line(-2, 2),
episode_type = "rolling", recurrence_length = 1,
episodes_max = 1, rolls_max = 1)
- link overlapping periods
dfr_2$period <- number_line(dfr_2$date, dfr_2$date + 5)
dfr_2$id.4 <- episodes(
date = dfr_2$period, case_length = index_window(dfr_2$period),
episodes_max = 1)
dfr_2
#> date id.1 pref
#> 1 2020-01-02 E.01 2020-01-02 -> 2020-01-04 (C) 2
#> 2 2020-01-03 E.01 2020-01-02 -> 2020-01-04 (D) 2
#> 3 2020-01-04 E.01 2020-01-02 -> 2020-01-04 (D) 2
#> 4 2020-01-05 E.04 2020-01-05 == 2020-01-05 (S) 2
#> 5 2020-01-06 E.05 2020-01-06 == 2020-01-06 (S) 2
#> 6 2020-01-11 E.06 2020-01-11 == 2020-01-11 (S) 2
#> 7 2020-01-12 E.07 2020-01-12 == 2020-01-12 (S) 2
#> 8 2020-01-13 E.08 2020-01-13 == 2020-01-13 (S) 2
#> 9 2020-01-14 E.09 2020-01-14 == 2020-01-14 (S) 1
#> 10 2020-01-15 E.10 2020-01-15 == 2020-01-15 (S) 2
#> 11 2020-01-16 E.11 2020-01-16 == 2020-01-16 (S) 2
#> 12 2020-01-21 E.12 2020-01-21 == 2020-01-21 (S) 2
#> 13 2020-01-22 E.13 2020-01-22 == 2020-01-22 (S) 2
#> 14 2020-01-23 E.14 2020-01-23 == 2020-01-23 (S) 2
#> 15 2020-01-24 E.15 2020-01-24 == 2020-01-24 (S) 2
#> 16 2020-01-25 E.16 2020-01-25 == 2020-01-25 (S) 2
#> 17 2020-01-26 E.17 2020-01-26 == 2020-01-26 (S) 2
#> id.2 id.3
#> 1 E.01 2020-01-02 == 2020-01-02 (S) E.01 2020-01-02 -> 2020-01-05 (C)
#> 2 E.02 2020-01-03 == 2020-01-03 (S) E.01 2020-01-02 -> 2020-01-05 (D)
#> 3 E.03 2020-01-04 == 2020-01-04 (S) E.01 2020-01-02 -> 2020-01-05 (D)
#> 4 E.04 2020-01-05 == 2020-01-05 (S) E.01 2020-01-02 -> 2020-01-05 (R)
#> 5 E.05 2020-01-06 == 2020-01-06 (S) E.05 2020-01-06 == 2020-01-06 (S)
#> 6 E.06 2020-01-11 == 2020-01-11 (S) E.06 2020-01-11 == 2020-01-11 (S)
#> 7 E.09 2020-01-12 -> 2020-01-16 (D) E.07 2020-01-12 == 2020-01-12 (S)
#> 8 E.09 2020-01-12 -> 2020-01-16 (D) E.08 2020-01-13 == 2020-01-13 (S)
#> 9 E.09 2020-01-12 -> 2020-01-16 (C) E.09 2020-01-14 == 2020-01-14 (S)
#> 10 E.09 2020-01-12 -> 2020-01-16 (D) E.10 2020-01-15 == 2020-01-15 (S)
#> 11 E.09 2020-01-12 -> 2020-01-16 (D) E.11 2020-01-16 == 2020-01-16 (S)
#> 12 E.12 2020-01-21 == 2020-01-21 (S) E.12 2020-01-21 == 2020-01-21 (S)
#> 13 E.13 2020-01-22 == 2020-01-22 (S) E.13 2020-01-22 == 2020-01-22 (S)
#> 14 E.14 2020-01-23 == 2020-01-23 (S) E.14 2020-01-23 == 2020-01-23 (S)
#> 15 E.15 2020-01-24 == 2020-01-24 (S) E.15 2020-01-24 == 2020-01-24 (S)
#> 16 E.16 2020-01-25 == 2020-01-25 (S) E.16 2020-01-25 == 2020-01-25 (S)
#> 17 E.17 2020-01-26 == 2020-01-26 (S) E.17 2020-01-26 == 2020-01-26 (S)
#> period id.4
#> 1 2020-01-02 -> 2020-01-07 E.01 2020-01-02 -> 2020-01-11 (C)
#> 2 2020-01-03 -> 2020-01-08 E.01 2020-01-02 -> 2020-01-11 (D)
#> 3 2020-01-04 -> 2020-01-09 E.01 2020-01-02 -> 2020-01-11 (D)
#> 4 2020-01-05 -> 2020-01-10 E.01 2020-01-02 -> 2020-01-11 (D)
#> 5 2020-01-06 -> 2020-01-11 E.01 2020-01-02 -> 2020-01-11 (D)
#> 6 2020-01-11 -> 2020-01-16 E.06 2020-01-11 -> 2020-01-16 (S)
#> 7 2020-01-12 -> 2020-01-17 E.07 2020-01-12 -> 2020-01-17 (S)
#> 8 2020-01-13 -> 2020-01-18 E.08 2020-01-13 -> 2020-01-18 (S)
#> 9 2020-01-14 -> 2020-01-19 E.09 2020-01-14 -> 2020-01-19 (S)
#> 10 2020-01-15 -> 2020-01-20 E.10 2020-01-15 -> 2020-01-20 (S)
#> 11 2020-01-16 -> 2020-01-21 E.11 2020-01-16 -> 2020-01-21 (S)
#> 12 2020-01-21 -> 2020-01-26 E.12 2020-01-21 -> 2020-01-26 (S)
#> 13 2020-01-22 -> 2020-01-27 E.13 2020-01-22 -> 2020-01-27 (S)
#> 14 2020-01-23 -> 2020-01-28 E.14 2020-01-23 -> 2020-01-28 (S)
#> 15 2020-01-24 -> 2020-01-29 E.15 2020-01-24 -> 2020-01-29 (S)
#> 16 2020-01-25 -> 2020-01-30 E.16 2020-01-25 -> 2020-01-30 (S)
#> 17 2020-01-26 -> 2020-01-31 E.17 2020-01-26 -> 2020-01-31 (S)
There are variations of episodes()
like episodes_wf_splits()
for
specific use cases such as more efficient handling of duplicate records.
partitions()
Key features;
- link all records within a specific periods in time
dfr_3 <- dfr_2["date"]
dfr_3$id.1 <- partitions(
date = dfr_3$date,
window = number_line(as.Date(c("2020-01-10", "2020-01-17")),
as.Date(c("2020-01-12", "2020-01-24")))
)
- link all records within a splits of an interval
dfr_3$id.2 <- partitions(date = dfr_3$date, by = 3, separate = TRUE)
dfr_3$id.3 <- partitions(date = dfr_3$date, length.out = 3, separate = TRUE)
dfr_3
#> date id.1 id.2 id.3
#> 1 2020-01-02 PN.01 (I) PN.18 (I) PN.18 (I)
#> 2 2020-01-03 PN.02 (I) PN.18 (D) PN.18 (D)
#> 3 2020-01-04 PN.03 (I) PN.18 (D) PN.18 (D)
#> 4 2020-01-05 PN.04 (I) PN.19 (I) PN.18 (D)
#> 5 2020-01-06 PN.05 (I) PN.19 (D) PN.18 (D)
#> 6 2020-01-11 PN.06 (I) PN.21 (I) PN.18 (D)
#> 7 2020-01-12 PN.07 (I) PN.21 (D) PN.18 (D)
#> 8 2020-01-13 PN.08 (I) PN.21 (D) PN.18 (D)
#> 9 2020-01-14 PN.09 (I) PN.22 (I) PN.19 (I)
#> 10 2020-01-15 PN.10 (I) PN.22 (D) PN.19 (D)
#> 11 2020-01-16 PN.11 (I) PN.22 (D) PN.19 (D)
#> 12 2020-01-21 PN.12 (I) PN.24 (I) PN.19 (D)
#> 13 2020-01-22 PN.13 (I) PN.24 (D) PN.19 (D)
#> 14 2020-01-23 PN.14 (I) PN.25 (I) PN.19 (D)
#> 15 2020-01-24 PN.15 (I) PN.25 (D) PN.19 (D)
#> 16 2020-01-25 PN.16 (I) PN.25 (D) PN.19 (D)
#> 17 2020-01-26 PN.17 (I) PN.25 (D) PN.19 (D)
Find out more!
- number_line and overlaps -
vignette("number_line")
- Introduction to epidemiological case definitions with diyar -
vignette("episodes")
- Introduction to record linkage with diyar -
vignette("links")
- Divvy up events with partitions -
vignette("panes")
Bugs and issues
Please report any bug or issues with using this package here.