# csQCA using Krook (2010)
#-------------------------
data(Krook)
Krook
# explain true configurations, complex solution
eqmcc(Krook, outcome = "WNP")
# explain true configurations with negated outcome set, complex solution
eqmcc(Krook, outcome = "WNP", neg.out = TRUE)
# same result with false configurations (not always the case!)
eqmcc(Krook, outcome = "WNP", explain = "0")
# explain true configurations, parsimonious solution,
# with solution details
eqmcc(Krook, outcome = "WNP", include = "?", details = TRUE)
# explain true configurations, parsimonious solution,
# with solution details and without row dominance
KrookSP <- eqmcc(Krook, outcome = "WNP", include = "?", details = TRUE,
rowdom = FALSE)
KrookSP
# pass truth table object to eqmcc() and derive complex solution
KrookTT <- truthTable(Krook, outcome = "WNP")
KrookSC <- eqmcc(KrookTT)
KrookSC
# print fundamental products
KrookSC$initials
# fsQCA using Emmenegger (2011)
#------------------------------
data(Emme)
Emme
# explain true configurations with negated outcome set, parsimonious solution,
# with solution details
eqmcc(Emme, outcome = "JSR", neg.out = TRUE, include = "?",
details = TRUE)
# explain true configurations, intermediate solution,
# with directional expectations and solution details
EmmeSI <- eqmcc(Emme, outcome = "JSR", incl.cut1 = 0.9, include = "?",
direxp = c(1,1,1,1,1,0), details = TRUE)
EmmeSI
# check PI chart for intermediate solution
EmmeSI$PIchart$i.sol
# check simplifying assumptions
EmmeSI$SA$S1
# check easy counterfactuals
EmmeSI$i.sol$C1P1$cntfs
# plot all PIs from intermediate solution
PIsc <- EmmeSI$pims$i.sol$C1P1
par(mfrow = c(2, 2))
for(i in 1:4){
plot(PIsc[, i], Emme$JSR, pch = 19, ylab = "JSR",
xlab = colnames(PIsc)[i], xlim = c(0, 1), ylim = c(0, 1),
main = paste("PI", print(i)))
abline(0, 1)
}
# mvQCA using Hartmann and Kemmerzell (2010)
#-------------------------------------------
data(HarKem)
HarKem
conds <- c("C", "F", "T", "V")
# explain true configurations, parsimonious solution,
# with contradictions
HarKemSP <- eqmcc(HarKem, outcome = "PB", conditions = conds,
include = c("?", "C"))
HarKemSP
# explain the contradictions
# N.B.: Only one contradiction, no minimization
eqmcc(HarKem, outcome = "PB", conditions = conds, incl.cut0 = 0.4,
explain = "C")
# explain true configurations, intermediate solution,
# with directional expectations:
# C{1}, F{1,2}, T{2}, V contribute to PB
HarKemSI <- eqmcc(HarKem, outcome = "PB", conditions = conds,
include = "?", direxp = c(1, "1;2", 2, 1))
HarKemSI
# deriving all possible solutions of the PI chart, not just minimal sum
HarKemALL <- eqmcc(HarKem, outcome = "PB", conditions = conds,
include = "?", all.sol = TRUE, rowdom = FALSE)
HarKemALL
# tQCA using Ragin and Strand (2008)
#-----------------------------------
data(RagStr)
RagStr
# explain true configurations, complex solution, with solution details and cases;
# auxiliary condition EBA is automatically excluded from parameters of fit
eqmcc(RagStr, outcome = "REC", details = TRUE, show.cases = TRUE)
Run the code above in your browser using DataLab