# see vignette("equatevignette") for a description of methods
# and additional examples
# random groups equating for (1) mean, (2) linear,
# (3) equipercentile, and (4) equipercentile with
# loglinear smoothing:
rscale <- ACTmath[, 1]
rx <- as.freqtab(cbind(rscale, ACTmath[, 2]))
ry <- as.freqtab(cbind(rscale, ACTmath[, 3]))
set.seed(2007)
req1 <- equate(rx, ry, type = "m", bootse = TRUE, reps = 50)
req2 <- equate(rx, ry, type = "l", bootse = TRUE, reps = 50)
req3 <- equate(rx, ry, type = "e", bootse = TRUE, reps = 50)
req4 <- equate(rx, ry, type = "e", bootse = TRUE, reps = 50,
smooth = "loglin", degree = 3)
# compare equated scores:
cbind(rscale, mean = req1$conc[, 2], linear = req2$conc[, 2],
equip = req3$conc[, 2], equipS = req4$conc[, 2])
# compare boostrap standard errors:
cbind(rscale, linear = req2$bootsee, equip = req3$bootsee,
equipS = req4$bootsee)
# nonequivalent groups design for (1) Tucker linear,
# (2) frequency estimation , and (3) Braun/Holland linear
nx <- freqtab(KBneat$x[, 1], xscale = 0:36,
v = KBneat$x[, 2], vscale = 0:12)
ny <- freqtab(KBneat$y[, 1], xscale = 0:36,
v = KBneat$y[, 2], vscale = 0:12)
neq1 <- equate(nx, ny, type = "Linear", method = "Tuck", w = 1)
neq2 <- equate(nx, ny, type = "equip", method = "freq", w = 1)
neq3 <- equate(nx, ny, type = "linear", method = "braun", w = 1)
# compare equated scores:
cbind(0:36, Tucker = neq1$conc[, 2], FE = neq2$conc[, 2],
Braun = neq3$conc[, 2])
Run the code above in your browser using DataLab