estepE(data, mu, sigmasq, pro, eps, warnSingular, Vinv, ...)
estepV(data, mu, sigmasq, pro, eps, warnSingular, Vinv, ...)
estepEII(data, mu, sigmasq, pro, eps, warnSingular, Vinv, ...)
estepVII(data, mu, sigmasq, pro, eps, warnSingular, Vinv, ...)
estepEEI(data, mu, decomp, pro, eps, warnSingular, Vinv, ...)
estepVEI(data, mu, decomp, pro, eps, warnSingular, Vinv, ...)
estepEVI(data, mu, decomp, pro, eps, warnSingular, Vinv, ...)
estepVVI(data, mu, decomp, pro, eps, warnSingular, Vinv, ...)
estepEEE(data, mu, Sigma, pro, eps, warnSingular, Vinv, ...)
estepEEV(data, mu, decomp, pro, eps, warnSingular, Vinv, ...)
estepVEV(data, mu, decomp, pro, eps, warnSingular, Vinv, ...)
estepVVV(data, mu, sigma, pro, eps, warnSingular, Vinv, ...)mu is a matrix whose columns are the
means of the components.cdens.[,,k]th entry is the covariance matrix for the kth
component of the mixture model.eps allow computations to proceed nearer to singularity. The
default is .Mclust$eps..Mclust$warnSingular.hypvol to the
data. Used only when pro includes an additional mixing
proportion for a noise component.decomp, sigma or cholsigma for model "VVV",
decomp for models "VII" and "EII", and Sigma or
cholSigma for mod[i,k]th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture."warn": An appropriate warning if problems are
encountered in the computations.do.call, allowing the output of e.g. mstep to be passed
without the need to specify individual parameters as arguments.estep,
em,
mstep,
do.call,
mclustOptionsdata(iris)
irisMatrix <- as.matrix(iris[,1:4])
irisClass <- iris[,5]
msEst <- mstepEII(data = irisMatrix, z = unmap(irisClass))
names(msEst)
estepEII(data = irisMatrix, mu = msEst$mu, pro = msEst$pro,
sigmasq = msEst$sigmasq)
do.call("estepEII", c(list(data=irisMatrix), msEst)) ## alternative callRun the code above in your browser using DataLab