Learn R Programming

mclust (version 5.2.2)

estepE: E-step in the EM algorithm for a parameterized Gaussian mixture model.

Description

Implements the expectation step in the EM algorithm for a parameterized Gaussian mixture model.

Usage

estepE(data, parameters, warn = NULL, ...) estepV(data, parameters, warn = NULL, ...) estepEII(data, parameters, warn = NULL, ...) estepVII(data, parameters, warn = NULL, ...) estepEEI(data, parameters, warn = NULL, ...) estepVEI(data, parameters, warn = NULL, ...) estepEVI(data, parameters, warn = NULL, ...) estepVVI(data, parameters, warn = NULL, ...) estepEEE(data, parameters, warn = NULL, ...) estepEEV(data, parameters, warn = NULL, ...) estepVEV(data, parameters, warn = NULL, ...) estepVVV(data, parameters, warn = NULL, ...) estepEVE(data, parameters, warn = NULL, ...) estepEVV(data, parameters, warn = NULL, ...) estepVEE(data, parameters, warn = NULL, ...) estepVVE(data, parameters, warn = NULL, ...)

Arguments

data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
parameters
The parameters of the model:

warn
A logical value indicating whether or certain warnings should be issued. The default is given by mclust.options("warn").
...
Catches unused arguments in indirect or list calls via do.call.

Value

A list including the following components:

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association. C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.

See Also

estep, em, mstep, do.call, mclustVariance, mclust.options.

Examples

Run this code
msEst <- mstepEII(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)

estepEII(data = iris[,-5], parameters = msEst$parameters)

Run the code above in your browser using DataLab