##
## 1. B-splines
##
# The simplest basis currently available:
# a single step function
bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1)
eval.bspl1.1 <- eval.basis(seq(0, 1, .2), bspl1.1)
# The second simplest basis:
# 2 step functions, [0, .5], [.5, 1]
bspl1.2 <- create.bspline.basis(norder=1, breaks=c(0,.5, 1))
eval.bspl1.2 <- eval.basis(seq(0, 1, .2), bspl1.2)
# Second order B-splines (degree 1: linear splines)
bspl2.3 <- create.bspline.basis(norder=2, breaks=c(0,.5, 1))
eval.bspl2.3 <- eval.basis(seq(0, 1, .1), bspl2.3)
# 3 bases: order 2 = degree 1 = linear
# (1) line from (0,1) down to (0.5, 0), 0 after
# (2) line from (0,0) up to (0.5, 1), then down to (1,0)
# (3) 0 to (0.5, 0) then up to (1,1).
##
## 2. Fourier
##
# The false Fourier series with 1 basis function
falseFourierBasis <- create.fourier.basis(nbasis=1)
eval.fFB <- eval.basis(seq(0, 1, .2), falseFourierBasis)
# Simplest real Fourier basis with 3 basis functions
fourier3 <- create.fourier.basis()
eval.fourier3 <- eval.basis(seq(0, 1, .2), fourier3)
# 3 basis functions on [0, 365]
fourier3.365 <- create.fourier.basis(c(0, 365))
eval.F3.365 <- eval.basis(day.5, fourier3.365)
matplot(eval.F3.365, type="l")
# The next simplest Fourier basis (5 basis functions)
fourier5 <- create.fourier.basis(nbasis=5)
eval.F5 <- eval.basis(seq(0, 1, .1), fourier5)
matplot(eval.F5, type="l")
# A more complicated example
dayrng <- c(0, 365)
nbasis <- 51
norder <- 6
weatherBasis <- create.fourier.basis(dayrng, nbasis)
basisMat <- eval.basis(day.5, weatherBasis)
matplot(basisMat[, 1:5], type="l")
##
## 3. predict.basisfd
##
basisMat. <- predict(weatherBasis, day.5)
stopifnot(
all.equal(basisMat, basisMat.)
)
Run the code above in your browser using DataLab