Learn R Programming

GOSim (version 1.10.0)

clusterEvaluation: Evaluate a given grouping of genes or GO terms.

Description

Evaluate a given grouping of genes or terms with respect to their GO similarity.

Usage

evaluateClustering(clust, Sim)

Arguments

clust
vector of cluster labels (integer or character) for each gene
Sim
similarity matrix

Value

evaluateClustering returns a list with two items:
clusterstats
matrix (ncluster x 2) of median within cluster similarities and median absolute deviations
clustersil
cluster silhouette values

Details

If necessary, more details than the description above

References

Rousseeuw, P., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comp. and Applied Mathematics, 1987, 20, 53-6

See Also

getGeneSimPrototypes, getGeneSim, getTermSim, GOenrichment

Examples

Run this code
	
	setOntology("BP")
	gomap <- get("gomap",env=GOSimEnv)
	allgenes = sample(names(gomap), 1000) # suppose these are all genes
	genesOfInterest = sample(allgenes, 20) # suppose these are all genes of interest
	
	sim = getGeneSim(genesOfInterest,verbose=FALSE) # and these are their similarities
	hc = hclust(as.dist(1-sim), method="ward") # use them to perform a clustering
	plot(hc) # plot the cluster tree
	cl = cutree(hc, k=3) # take 3 clusters	

	if(require(cluster)){
		ev = evaluateClustering(cl, sim) # evaluate the clustering
		print(ev$clusterstats) # print out some statistics
		plot(ev$clustersil,main="") # plot the cluster silhouettes
	}
	
	# investigate cluster 1 further	
	if(require(topGO))
		GOenrichment(genesOfInterest[cl == 1], allgenes, cutoff=0.05) # print out what cluster 1 is about

Run the code above in your browser using DataLab