# Create stream
dsd <- DSD_GaussianStatic(k=3, d=2)
micro <- DSC_DenStream()
cluster(micro, dsd, 500)
# Evaluate micro-clusters
# Note: we use here only n=500 points for evaluation to speed up execution
evaluate(micro, dsd, method=c("numMicro","numMacro","purity","crand"), n=500)
macro <- DSC_Kmeans(k=2)
recluster(macro, micro)
# Evaluate macro-clusters by assigning to micro-clusters
evaluate(macro, dsd, method=c("purity","crand"), n=500)
# Evaluate macro-clusters by assigning to macro-clusters
# This gives a similar result as the micro-cluster assignment since
# the real clusters are spherical (multidimensional Gaussians).
evaluate(macro, dsd, method=c("numMicro","numMacro","purity","crand"),
n=500, assign="macro")
# Evaluate an evolving data stream
dsd <- DSD_GaussianMoving()
micro <- DSC_DenStream(initPoints=100)
evaluate_cluster(micro, dsd, method=c("purity","crand"), n=600, horizon= 100,
assign="micro")
reset_stream(dsd)
micro <- DSC_tNN(r=.1, macro=FALSE, lambda=.01, decay_interval=100)
macro <- DSC_Kmeans(k=3)
evaluate_cluster(micro, dsd, macro,
method=c("numMicro","numMacro","purity","crand"), n=600,
horizon=100, assign="micro")
# visualize
reset_stream(dsd)
micro <- DSC_tNN(r=.1, macro=FALSE, lambda=.1, decay_interval=20)
animate_cluster(micro, dsd, macro, n=600,
evaluationMethod=c("purity"), pointInterval=20,
xlim=c(-.2,1.2), ylim=c(-.2,1.2))
Run the code above in your browser using DataLab