dsd <- DSD_Gaussians(k=3, d=2)
dstream <- DSC_DStream(gridsize=0.05)
cluster(dstream, dsd, 500)
plot(dstream, dsd)
# Evaluate micro-clusters
# Note: we use here only n=500 points for evaluation to speed up execution
evaluate(dstream, dsd, measure=c("numMicro","numMacro","purity","crand", "SSQ"),
n=100)
# DStream also provides macro clusters. Evaluate macro clusters with type="macro"
plot(dstream, dsd, type="macro")
evaluate(dstream, dsd, type ="macro",
measure=c("numMicro","numMacro","purity","crand", "SSQ"), n=100)
# Points are by default assigned to the closest micro clusters for evalution.
# However, points can also be assigned to the closest macro-cluster using
# assign="macro".
evaluate(dstream, dsd, type ="macro", assign="macro",
measure=c("numMicro","numMacro","purity","crand", "SSQ"), n=100)
# Evaluate an evolving data stream
dsd <- DSD_Benchmark(1)
dstream <- DSC_DStream(gridsize=0.05, lambda=0.1)
evaluate_cluster(dstream, dsd, type="macro", assign="micro",
measure=c("numMicro","numMacro","purity","crand"),
n=600, horizon=100)
# animate the clustering process
reset_stream(dsd)
dstream <- DSC_DStream(gridsize=0.05, lambda=0.1)
animate_cluster(dstream, dsd, n=5000, horizon=100,
evaluationMeasure=c("crand"), evaluationType="macro", evaluationAssign="micro",
type="both", xlim=c(0,1), ylim=c(0,1))
Run the code above in your browser using DataLab