exppoisson(llambda = "loge", lbetave = "loge", elambda = list(),
ebetave = list(), ilambda = 1.1, ibetave = 2,
zero = NULL)
Links
for more choices.earg
in Links
for general information.lambda
and betave
parameters.
Currently this function is not intelligent enough to
obtain better initial values."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.genhypergeo
function).dexppois
,
exponential
,
poisson
.lambda = exp(1); betave = exp(2)
rdata = data.frame(y = rexppois(n = 1000, lambda, betave))
library(hypergeo)
fit = vglm(y ~ 1, exppoisson, rdata, trace = TRUE)
c(with(rdata, mean(y)), head(fitted(fit), 1))
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Run the code above in your browser using DataLab