Learn R Programming

GDINA (version 1.4.2)

extract: extract elements from objects of various classes

Description

A generic function to extract elements from objects of class GDINA, itemfit, modelcomp, Qval or simGDINA. This page gives the elements that can be extracted from the class GDINA. To see what can be extracted from itemfit, modelcomp, and Qval, go to the corresponding function help page. Objects which can be extracted from GDINA objects include:
AIC
AIC
att.prior
attribute prior weights for calculating marginalized likelihood in the last iteration
att.str
argument att.str
BIC
BIC
call
function call
catprob.parm
category success probability for each latent group; the same as itemprob.parm for dichotomous response items.
catprob.se
SE associated with the category success probability for each latent group.
catprob.cov
variance-covariance matrix of item endorsement probabilities for all items
conv.crit
argument conv.crit
dat
item responses analyzed
delta.parm
delta parameters for each category
delta.cov
Convariance matrix associated with the delta parameters.
delta.se
SE associated with the delta parameters for each latent group.
deviance
deviance: -2 times observed log-likelihood value
dif.LL
absolute change in deviance in the last EM iteration
dif.p
max absolute change in success probabilities in the last EM iteration
digits
argument digits
discrim
GDINA discrimination index
empirical
argument empirical
end.time
end time
expectedCorrect
expected # of examinees in each latent group answering item correctly
expectedTotal
expected # of examinees in each latent group
higher.order
higher-order model specifications
higher.order.method
argument higher.order$method
higher.order.model
argument higher.order$model
HO.parm.history
HO.parm.history in diagnosis mode
initial.catprob
initial item category probability parameters
iter.history
iter.history in diagnosis mode
item.names
argument item.names
itemprob.history
itemprob.history in diagnosis mode
itemprob.parm
item success probability for each latent group
itemprob.se
SE associated with the item success probability for each latent group.
LCprob.parm
category success probability for each latent class
logLik
observed log-likelihood value
loglikelihood.i
log-likelihood for each examinee
likepost.history
likepost.history in diagnosis mode
logposterior.i
log-posteriori for each examinee
maxitr
argument maxitr
models
fitted CDMs for each item/category
mono.constraint
argument mono.constraint
natt
number of attributes
ncat
number of categories excluding category zero
ngroup
number of groups
nitem
number of items
nitr
number of iterations
nobs
number of individuals
npar
number of parameters
npar.item
number of item parameters
npar.att
number of attribute parameters
nstarts
argument nstarts
prevalence
prevalence of each attribute
posterior.prob
posterior weights for each latent class
Q
Q-matrix
Qc
Qc-matrix
RN.history
RN.history in diagnosis mode
start.time
starting time
sequential
argument sequential
seq.dat
data for sequential models
time
time used
verbose
argument verbose

Usage

extract(object, what, ...)

Arguments

object
objects from class GDINA,itemfit, modelcomp, Qval or simGDINA
what
what to extract
...
additional arguments