#Read in the ANT data (see ?ANT).
data(ANT)
#Show summaries of the ANT data.
head(ANT)
str(ANT)
summary(ANT)
#Compute some useful statistics per cell.
cell_stats = ddply(
.data = ANT
, .variables = .( sid , group , cue , flanker )
, .fun <- function(x){
#Compute error rate as percent.
error_rate = (1-mean(x$acc))*100
#Compute mean RT (only accurate trials).
mean_rt = mean(x$rt[x$acc==1])
#Compute SD RT (only accurate trials).
sd_rt = sd(x$rt[x$acc==1])
return(c(error_rate=error_rate,mean_rt=mean_rt,sd_rt=sd_rt))
}
)
#Run an ANOVA on the mean_rt data.
mean_rt_anova = ezANOVA(
data = cell_stats
, dv = .(mean_rt)
, sid = .(sid)
, within = .(cue,flanker)
, between = .(group)
)
#Show the ANOVA & assumption tests.
print(mean_rt_anova)
#Run an ANOVA on the mean_rt data, ignoring group.
mean_rt_anova2 = ezANOVA(
data = cell_stats
, dv = .(mean_rt)
, sid = .(sid)
, within = .(cue,flanker)
)
#Show the ANOVA & assumption tests.
print(mean_rt_anova2)
#Compute the grand mean RT per Ss.
gmrt = ddply(
.data = cell_stats
, .variables = .( sid , group )
, .fun <- function(x){
y = mean(x$mean_rt)
return(c(y=y))
}
)
#Run a purely between-Ss ANOVA on the mean_rt data.
mean_rt_anova3 = ezANOVA(
data = gmrt
, dv = .(y)
, sid = .(sid)
, between = .(group)
)
#Show the ANOVA & assumption tests.
print(mean_rt_anova3)
Run the code above in your browser using DataLab