Last chance! 50% off unlimited learning
Sale ends in
ezPredict(
fit
, to_predict = NULL
, numeric_res = 0
, boot = TRUE
, iterations = 1e3
, zero_intercept_variance = FALSE
)
lmer
object.to_predict
. If to_predict
is null and a numeric fixed effect is encountered in the fitted model, then prediboot==TRUE
.ezMixed
, ezPlot2
#Read in the ANT data (see ?ANT).
data(ANT)
head(ANT)
#fit a mixed effects model to the rt data
rt_fit = lmer(
formula = rt ~ cue*flank*group + (1|subnum)
, data = ANT[ANT$error==0,]
)
#obtain the predictions from the model
rt_preds = ezPredict(
fit = rt_fit
)
#visualize the predictions
ezPlot2(
preds = rt_preds
, x = flank
, row = cue
, col = group
, y_lab = 'RT (ms)'
)
Run the code above in your browser using DataLab