A fast procedure for computing latent semantic analysis.
fast_lsa(dat, local_weights = "log", global_weights = "idf")fast_lsi(dat, local_weights = "log", global_weights = "idf")
Input data: can be a table or a data frame (but the data frame must have only two columns).
Character specification of the local weighting function (without a prefix): see Weighting functions.
Character specification of the global weighting function (without a prefix): see Weighting functions.
A list with components:
val
The singular values, indicating how much each latent axis explains.
pos1
The coordinates of the first set of levels (viz. the row levels of a frequency table).
pos2
The coordinates of the second set of levels (viz. the column levels of a frequency table).
Deerwester, S., S. T. Dumais, G. W. Furnas, Th. K. Landauer and R. Harshman (1990) Indexing by latent semantic analysis. Journal of the American society for information science 41 (6), 391--407.
Landauer, Th. K. and S. T. Dumais (1997) A solution to Plato's problem: the latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychological review 104, 211--240.
# NOT RUN {
SndT_Fra <- read.table(system.file("extdata", "SndT_Fra.txt", package = "svs"),
header = TRUE, sep = "\t", quote = "\"", encoding = "UTF-8",
stringsAsFactors = FALSE)
lsa.SndT_Fra <- fast_lsa(SndT_Fra)
lsa.SndT_Fra
# }
Run the code above in your browser using DataLab