smooth.basis
. A functional parameter object is a functional
data object with additional slots specifying a roughness penalty, a
smoothing parameter and whether or not the functional parameter is to
be estimated or held fixed. Functional parameter objects are used as
arguments to functions that estimate functional parameters.fdPar(fdobj=NULL, Lfdobj=NULL, lambda=0, estimate=TRUE,
penmat=NULL)
fd
with a coefficient If NULL
, Lfdobj depends on fdobj[['basis']][['type']]:
fdPar
),
which is a list with the following components:fd
)Lfd
)Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York
register.fd
and smooth.monotone
. Often a list of functional parameters must be supplied to a function
as an argument, and it may be that some of these parameters are
considered known and must remain fixed during the analysis. This is
the case for functions fRegress
and pda.fd
, for
example.
cca.fd
,
density.fd
,
fRegress
,
intensity.fd
,
pca.fd
,
smooth.fdPar
,
smooth.basis
,
smooth.basisPar
,
smooth.monotone
,
int2Lfd
##
## Simple example
##
# set up range for density
rangeval <- c(-3,3)
# set up some standard normal data
x <- rnorm(50)
# make sure values within the range
x[x < -3] <- -2.99
x[x > 3] <- 2.99
# set up basis for W(x)
basisobj <- create.bspline.basis(rangeval, 11)
# set up initial value for Wfdobj
Wfd0 <- fd(matrix(0,11,1), basisobj)
WfdParobj <- fdPar(Wfd0)
WfdP3 <- fdPar(seq(-3, 3, length=11))
##
## smooth the Canadian daily temperature data
##
# set up the fourier basis
nbasis <- 365
dayrange <- c(0,365)
daybasis <- create.fourier.basis(dayrange, nbasis)
dayperiod <- 365
harmaccelLfd <- vec2Lfd(c(0,(2*pi/365)^2,0), dayrange)
# Make temperature fd object
# Temperature data are in 12 by 365 matrix tempav
# See analyses of weather data.
# Set up sampling points at mid days
daytime <- (1:365)-0.5
# Convert the data to a functional data object
daybasis65 <- create.fourier.basis(dayrange, nbasis, dayperiod)
templambda <- 1e1
tempfdPar <- fdPar(fdobj=daybasis65, Lfdobj=harmaccelLfd,
lambda=templambda)
#FIXME
#tempfd <- smooth.basis(CanadianWeather$tempav, daytime, tempfdPar)$fd
# Set up the harmonic acceleration operator
Lbasis <- create.constant.basis(dayrange);
Lcoef <- matrix(c(0,(2*pi/365)^2,0),1,3)
bfdobj <- fd(Lcoef,Lbasis)
bwtlist <- fd2list(bfdobj)
harmaccelLfd <- Lfd(3, bwtlist)
# Define the functional parameter object for
# smoothing the temperature data
lambda <- 0.01 # minimum GCV estimate
#tempPar <- fdPar(daybasis365, harmaccelLfd, lambda)
# smooth the data
#tempfd <- smooth.basis(daytime, CanadialWeather$tempav, tempPar)$fd
# plot the temperature curves
#plot(tempfd)
Run the code above in your browser using DataLab