Learn R Programming

whippr

The goal of whippr is to provide a set of tools for manipulating gas exchange data from cardiopulmonary exercise testing.

Why whippr?

The name of the package is in honor of Prof. Brian J Whipp and his invaluable contribution to the field of exercise physiology.

Installation

You can install the development version of whippr from Github with:

# install.packages("remotes")
remotes::install_github("fmmattioni/whippr")

Use

Read data

library(whippr)

## example file that comes with the package for demonstration purposes
path_example <- system.file("example_cosmed.xlsx", package = "whippr")

df <- read_data(path = path_example, metabolic_cart = "cosmed")

df
#> # Metabolic cart: COSMED 
#> # Data status: raw data
#> # Time column: t
#> # A tibble: 754 × 119
#>        t    Rf    VT    VE   VO2  VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>    <dbl>     <dbl>    <dbl>
#>  1     2  8.08 1.19   9.60  380.  301.  185.   52.9     25.3      31.9     4.58
#>  2     4 23.2  0.915 21.2   864.  665.  141.   40.8     24.5      31.9    10.4 
#>  3     8 15.6  2.11  32.9  1317. 1075.  325.   97.2     25.0      30.6    15.9 
#>  4    11 20.6  1.18  24.4   894.  714.  188.   49.2     27.3      34.1    10.8 
#>  5    14 23.3  0.947 22.1   822.  647.  150.   39.4     26.9      34.1     9.90
#>  6    18 14.7  2.28  33.6  1347. 1126.  351.  108.      24.9      29.8    16.2 
#>  7    23 11.2  2.32  26.1   980.  848.  364.  107.      26.6      30.7    11.8 
#>  8    28 13.2  2.18  28.8  1147.  981.  336.  105.      25.2      29.4    13.8 
#>  9    31 17.7  1.51  26.7  1048.  860.  234.   68.8     25.5      31.0    12.6 
#> 10    35 14.2  1.68  23.8   973.  794.  257.   79.3     24.5      30.0    11.7 
#> # ℹ 744 more rows
#> # ℹ 108 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,
#> #   `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,
#> #   Marker <lgl>, FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>,
#> #   Te <dbl>, Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,
#> #   `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,
#> #   `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …

Interpolate

df %>% 
  interpolate()
#> # Metabolic cart: COSMED 
#> # Data status: interpolated data
#> # Time column: t
#> # A tibble: 2,159 × 114
#>        t    Rf    VT    VE   VO2  VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>    <dbl>     <dbl>    <dbl>
#>  1     2  8.08 1.19   9.60  380.  301.  185.   52.9     25.3      31.9     4.58
#>  2     3 15.6  1.05  15.4   622.  483.  163.   46.8     24.9      31.9     7.50
#>  3     4 23.2  0.915 21.2   864.  665.  141.   40.8     24.5      31.9    10.4 
#>  4     5 21.3  1.21  24.1   978.  767.  187.   54.9     24.6      31.6    11.8 
#>  5     6 19.4  1.51  27.1  1091.  870.  233.   69.0     24.8      31.3    13.1 
#>  6     7 17.5  1.81  30.0  1204.  973.  279.   83.1     24.9      30.9    14.5 
#>  7     8 15.6  2.11  32.9  1317. 1075.  325.   97.2     25.0      30.6    15.9 
#>  8     9 17.3  1.80  30.1  1176.  955.  279.   81.2     25.7      31.8    14.2 
#>  9    10 19.0  1.49  27.2  1035.  834.  233.   65.2     26.5      33.0    12.5 
#> 10    11 20.6  1.18  24.4   894.  714.  188.   49.2     27.3      34.1    10.8 
#> # ℹ 2,149 more rows
#> # ℹ 103 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,
#> #   `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,
#> #   FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>, Te <dbl>,
#> #   Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,
#> #   `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,
#> #   `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …

Perform averages

Bin-average

## example of performing 30-s bin-averages
df %>% 
  interpolate() %>% 
  perform_average(type = "bin", bins = 30)
#> # Metabolic cart: COSMED 
#> # Data status: averaged data - 30-s bins
#> # Time column: t
#> # A tibble: 72 × 114
#>        t    Rf    VT    VE   VO2  VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>    <dbl>     <dbl>    <dbl>
#>  1    30  16.3  1.75  26.5 1032.  852.  272.   80.5     25.7      31.4     12.4
#>  2    60  19.0  1.39  25.1 1046.  822.  211.   65.0     24.1      30.7     12.6
#>  3    90  16.6  1.76  28.1 1164.  949.  268.   85.0     24.3      29.7     14.0
#>  4   120  17.8  1.93  25.7 1054.  853.  296.   92.5     24.6      30.5     12.7
#>  5   150  15.4  1.68  24.6  993.  823.  257.   80.4     24.8      29.9     12.0
#>  6   180  18.1  1.38  25.1 1058.  833.  209.   65.4     24.0      30.4     12.7
#>  7   210  22.3  1.37  29.1 1122.  935.  213.   63.4     26.0      31.3     13.5
#>  8   240  16.6  1.91  24.9  966.  825.  301.   89.5     25.8      30.2     11.6
#>  9   270  16.8  1.64  26.2 1044.  896.  252.   79.7     25.2      29.4     12.6
#> 10   300  14.5  2.09  27.2 1097.  945.  322.  103.      24.6      28.8     13.2
#> # ℹ 62 more rows
#> # ℹ 103 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,
#> #   `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,
#> #   FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>, Te <dbl>,
#> #   Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,
#> #   `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,
#> #   `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …

Rolling-average

## example of performing 30-s rolling-averages
df %>% 
  interpolate() %>% 
  perform_average(type = "rolling", rolling_window = 30)
#> # Metabolic cart: COSMED 
#> # Data status: averaged data - 30-s rolling average
#> # Time column: t
#> # A tibble: 2,130 × 114
#>        t    Rf    VT    VE   VO2  VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>    <dbl>     <dbl>    <dbl>
#>  1  16.5  16.4  1.75  26.5 1033.  852.  271.   80.1     25.7      31.3     12.4
#>  2  17.5  16.6  1.76  27.0 1054.  870.  273.   80.7     25.7      31.3     12.7
#>  3  18.5  16.7  1.78  27.3 1067.  882.  276.   81.6     25.7      31.3     12.9
#>  4  19.5  16.4  1.80  27.4 1071.  887.  280.   82.8     25.7      31.2     12.9
#>  5  20.5  16.2  1.82  27.4 1071.  888.  282.   83.6     25.7      31.1     12.9
#>  6  21.5  16.0  1.82  27.3 1068.  885.  282.   83.8     25.7      31.1     12.9
#>  7  22.5  16.0  1.81  27.1 1062.  880.  280.   83.4     25.7      31.1     12.8
#>  8  23.5  16.0  1.78  26.9 1052.  871.  277.   82.4     25.6      31.0     12.7
#>  9  24.5  16.1  1.77  26.7 1048.  867.  274.   81.8     25.5      31.0     12.6
#> 10  25.5  16.1  1.76  26.6 1050.  868.  273.   81.9     25.4      30.8     12.6
#> # ℹ 2,120 more rows
#> # ℹ 103 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,
#> #   `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,
#> #   FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>, Te <dbl>,
#> #   Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,
#> #   `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,
#> #   `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …

Perform VO2 kinetics analysis

results_kinetics <- vo2_kinetics(
  .data = df,
  intensity_domain = "moderate",
  vo2_column = "VO2",
  protocol_n_transitions = 3,
  protocol_baseline_length = 360,
  protocol_transition_length = 360,
  cleaning_level = 0.95,
  cleaning_baseline_fit = c("linear", "exponential", "exponential"),
  fit_level = 0.95,
  fit_bin_average = 5,
  fit_phase_1_length = 20,
  fit_baseline_length = 120,
  fit_transition_length = 240,
  verbose = TRUE
)
#> ──────────────────────────  * V̇O₂ kinetics analysis *  ─────────────────────────
#> ✔ Detecting outliers
#> • 14 outliers found in transition 1
#> • 15 outliers found in transition 2
#> • 13 outliers found in transition 3
#> ✔ Processing data...
#> ✔       └─ Removing outliers
#> ✔       └─ Interpolating each transition
#> ✔       └─ Ensemble-averaging transitions
#> ✔       └─ Performing 5-s bin averages
#> ✔ Fitting data...
#> ✔       └─ Fitting baseline
#> ✔       └─ Fitting transition
#> ✔       └─ Calculating residuals
#> ✔       └─ Preparing plots
#> ──────────────────────────────────  * DONE *  ──────────────────────────────────

Perform VO2max analysis

df_incremental <- read_data(path = system.file("ramp_cosmed.xlsx", package = "whippr"), metabolic_cart = "cosmed")

vo2_max(
  .data = df_incremental, ## data from `read_data()`
  vo2_column = "VO2",
  vo2_relative_column = "VO2/Kg",
  heart_rate_column = "HR",
  rer_column = "R",
  detect_outliers = TRUE,
  average_method = "bin",
  average_length = 30,
  plot = TRUE,
  verbose = TRUE,
  ## arguments for `incremental_normalize()`
  incremental_type = "ramp",
  has_baseline = TRUE,
  baseline_length = 240, ## 4-min baseline
  work_rate_magic = TRUE, ## produce a work rate column
  baseline_intensity = 20, ## baseline was performed at 20 W
  ramp_increase = 25, ## 25 W/min ramp
  ## arguments for `detect_outliers()`
  test_type = "incremental",
  cleaning_level = 0.95, 
  method_incremental = "linear"
)
#> ────────────────────────────  * V̇O₂ max analysis *  ────────────────────────────
#> ✔ Normalizing incremental data...
#> ✔ Detecting outliers
#> • 2 outlier(s) found in baseline
#> • 15 outlier(s) found in ramp
#> ✔ Filtering out outliers...
#> ✔ Interpolating from breath-by-breath into second-by-second...
#> ✔ Performing averages...
#> # A tibble: 1 × 6
#>   VO2max_absolute VO2max_relative POpeak HRmax RERmax plot  
#>             <dbl>           <dbl>  <int> <dbl>  <dbl> <list>
#> 1           3514.            45.8    303   193   1.13 <gg>

Metabolic carts currently supported

Online app

Would you like to perform VO2 kinetics analyses but don’t know R? No problem! You can use our online app: VO2 Kinetics App

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Icons made by monkik from www.flaticon.com

Copy Link

Version

Install

install.packages('whippr')

Monthly Downloads

338

Version

0.1.4

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Felipe Mattioni Maturana

Last Published

July 13th, 2025

Functions in whippr (0.1.4)

predict_bands_transition

Extract confidence and prediction bands for the transition phase
predict_bands_baseline

Extract confidence and prediction bands for the baseline phase
run_manual_cleaner

Manual data cleaner
theme_whippr

Whippr ggplot2 theme
plot_incremental

Plot incremental test work rate
whippr-package

whippr: Tools for Manipulating Gas Exchange Data
vo2_max

VO2max
vo2_kinetics

VO2 kinetics
undoHistory

Undo/Redo History Buttons
process_data

Process data for VO2 kinetics fitting
print.whippr

Whippr print method
work_rate_ramp

Work rate for a ramp-incremental test
work_rate_step

Work rate for a step-incremental test
interpolate

Interpolate data from breath-by-breath into second-by-second
model_diagnostics

Model diagnostics
incremental_normalize

Normalize incremental test data
normalize_transitions

Normalize transitions
new_whippr_tibble

Construct a new tibble with metadata
get_residuals

Get residuals
detect_outliers

Detect outliers
normalize_time

Normalize time column
normalize_first_breath

Normalize first breath
plot_outliers

Plot outliers
predict_bands

Extract confidence and prediction bands
outliers_anomaly

Anomaly method for detecting outliers from an incremental test
perform_kinetics

Perform VO2 kinetics fitting
perform_average

Perform average on second-by-second data
outliers_linear

Linear method for detecting outliers from an incremental test
%>%

Pipe operator
perform_max

Perform VO2max calculation
read_data

Read data from metabolic cart
remove_empty

Remove empty rows and/or columns from a data.frame or matrix.