Learn R Programming

pomp (version 3.3)

filter.mean: Filtering mean

Description

The mean of the filtering distribution

Usage

# S4 method for kalmand_pomp
filter.mean(object, vars, ...)

# S4 method for pfilterd_pomp filter.mean(object, vars, ...)

Arguments

object

result of a filtering computation

vars

optional character; names of variables

ignored

Details

The filtering distribution is that of $$X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_k)=y^*_k,$$ where \(X(t_k)\), \(Y(t_k)\) are the latent state and observable processes, respectively, and \(y^*_t\) is the data, at time \(t_k\).

The filtering mean is therefore the expectation of this distribution $$E[X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_k)=y^*_k].$$

See Also

More on particle-filter based methods in pomp: bsmc2(), cond.logLik(), eff.sample.size(), filter.traj(), kalman, mif2(), pfilter(), pmcmc(), pred.mean(), pred.var(), saved.states(), wpfilter()