fingerprint.regression(data, eco.rnd = c("taxa.labels", "richness",
"frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap"),
eco.method = c("quantile", "lm", "mantel"), eco.permute = 1000,
evo.method = c("lambda", "delta", "kappa", "blom.k"), eco.swap = 1000,
abundance = TRUE, ...)## S3 method for class 'fingerprint.regression':
print(x, ...)
## S3 method for class 'fingerprint.regression':
summary(object, ...)
## S3 method for class 'fingerprint.regression':
plot(x, eco = c("slope", "corrected"),
xlab = "Community Trait Similarity", ylab = "Phylogenetic inertia", ...)
comparative.comm for analysistaxa.labels (DEFAULT),
richness, frequency, sample.pool,
phylogeny.pool, independentswap, trialswapeco.rnd); default 1000lambda (default), delta, kappa, blom.k;
see phy.signal.eco.rnd; DEFAULT 1000)fingerprint.regression objectfingerprint.regression objectslope), or the
median difference between the simulations and the observed values
(corrected)Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. & Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11): 1463--1464.
Pagel M. Inferring the historical patterns of biological evolution. Nature 401(6756): 877--884.
eco.xxx.regression phy.signaldata(laja)
data <- comparative.comm(invert.tree, river.sites, invert.traits, river.env)
fingerprint.regression(data, eco.permute=10)
plot(fingerprint.regression(data, permute=10, method="lm"))Run the code above in your browser using DataLab