#### Linear regression -----------------------------
data(prostate)
X <- as.matrix(prostate[,1:8])
y <- prostate$lpsa
fit <- ncvreg(X, y)
obj <- fir(fit)
obj[1:10,]
# Comparison with perm.ncvreg
par(mfrow=c(2,2))
plot(obj)
plot(obj, type="EF")
pmfit <- perm.ncvreg(X, y)
plot(pmfit)
plot(pmfit, type="EF")
# Note that fir() is more conservative
#### Logistic regression ---------------------------
data(heart)
X <- as.matrix(heart[,1:9])
y <- heart$chd
fit <- ncvreg(X, y, family="binomial")
obj <- fir(fit)
head(obj)
plot(obj)
plot(obj, type="EF")
#### Cox regression --------------------------------
data(Lung)
X <- Lung$X
y <- Lung$y
fit <- ncvsurv(X, y)
obj <- fir(fit)
head(obj)
plot(obj)
plot(obj, type="EF")
Run the code above in your browser using DataLab