Learn R Programming

tfdatasets (version 2.6.0)

fit.FeatureSpec: Fits a feature specification.

Description

This function will fit the specification. Depending on the steps added to the specification it will compute for example, the levels of categorical features, normalization constants, etc.

Usage

# S3 method for FeatureSpec
fit(object, dataset = NULL, ...)

Arguments

object

A feature specification created with feature_spec().

dataset

(Optional) A TensorFlow dataset. If NULL it will use the dataset provided when initilializing the feature_spec.

...

(unused)

Value

a fitted FeatureSpec object.

See Also

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

Run this code
# NOT RUN {
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age)

spec_fit <- fit(spec)
spec_fit
# }

Run the code above in your browser using DataLab