fit.ghypuv(data, lambda = 1, alpha.bar = 0.1, mu = mean(data),
sigma = sqrt(var(data)), gamma = 0,
opt.pars = c(lambda = T, alpha.bar = T, mu = T,
sigma = T, gamma = !symmetric),
symmetric = F, save.data = T, na.rm = T, silent = FALSE, ...)
fit.hypuv(data,
opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)fit.NIGuv(data,
opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)
fit.VGuv(data, lambda = 1,
opt.pars = c(lambda = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)
fit.tuv(data, nu = 4,
opt.pars = c(nu = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)
vector or univariate data.frame.-2*lambda.vector which states which parameters should be fitted.TRUE the skewness parameter gamma keeps zero.TRUE data will be stored within the
mle.ghypuv object.TRUE missing values will be removed from data.TRUE no prompts will appear in the console.optim and to fit.ghypuv when
fitting special cases of the generalized hyperbolic distribution.mle.ghypuv.optim is used to maximize
the loglikelihood function. The default method is that of Nelder and Mead which
uses only function values. Parameters of optim can be passed via
the ...argument of the fitting routines.fit.ghypmv, fit.hypmv, fit.NIGmv,
fit.VGmv, fit.tmv for multivariate fitting routines.data(smi.stocks)
fit.NIGuv(data=smi.stocks[,"SMI"],opt.pars=c(alpha.bar=FALSE),alpha.bar=1,
control=list(abs.tol = 1e-5, maxit = 100))Run the code above in your browser using DataLab