fit.ghypuv(data, lambda = 1, alpha.bar = 0.1, mu = mean(data),
sigma = sqrt(var(data)), gamma = 0,
opt.pars = c(lambda = T, alpha.bar = T, mu = T,
sigma = T, gamma = !symmetric),
symmetric = F, save.data = T, na.rm = T, silent = FALSE, ...)
fit.hypuv(data,
opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)fit.NIGuv(data,
opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)
fit.VGuv(data, lambda = 1,
opt.pars = c(lambda = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)
fit.tuv(data, nu = 4,
opt.pars = c(nu = T, mu = T, sigma = T, gamma = !symmetric),
symmetric = F, ...)
vector
or univariate data.frame
.-2*lambda
.vector
which states which parameters should be fitted.TRUE
the skewness parameter gamma
keeps zero.TRUE
data
will be stored within the
mle.ghypuv
object.TRUE
missing values will be removed from data
.TRUE
no prompts will appear in the console.optim
and to fit.ghypuv
when
fitting special cases of the generalized hyperbolic distribution.mle.ghypuv
.optim
is used to maximize
the loglikelihood function. The default method is that of Nelder and Mead which
uses only function values. Parameters of optim
can be passed via
the ...argument of the fitting routines.fit.ghypmv
, fit.hypmv
, fit.NIGmv
,
fit.VGmv
, fit.tmv
for multivariate fitting routines.data(smi.stocks)
fit.NIGuv(data=smi.stocks[,"SMI"],opt.pars=c(alpha.bar=FALSE),alpha.bar=1,
control=list(abs.tol = 1e-5, maxit = 100))
Run the code above in your browser using DataLab