Learn R Programming

gstat (version 0.9-4)

fit.variogram: Fit a Variogram Model to a Sample Variogram

Description

Fit a simple or nested variogram model to a sample variogram, allowing partial fixing of parameters

Usage

fit.variogram(object, model, fit.sills = T, fit.ranges = T,
	fit.method = 7, print.SSE = FALSE, debug.level = 1)

Arguments

object
sample variogram, output of variogram
model
variogram model, output of vgm
fit.sills
logical; determines whether the partial sill coefficients (including nugget variance) should be fitted; or logical vector: determines for each partial sill parameter whether it should be fitted or fixed.
fit.ranges
logical; determines whether the range coefficients (excluding that of the nugget component) should be fitted; or logical vector: determines for each range parameter whether it should be fitted or fixed.
fit.method
fitting method, used by gstat. The default method uses weights $N_h/h^2$ with $N_h$ the number of point pairs and $h$ the distance. This criterion is not supported by theory, but by practice. For other values of fit.method, see table 4.2 in
print.SSE
logical; if TRUE, print the (weighted) sum of squared errors of the fitted model
debug.level
integer; set gstat internal debug level

Value

  • returns a fitted variogram model (of class variogram.model)

References

http://www.gstat.org/

See Also

variogram, vgm

Examples

Run this code
data(meuse)
vgm1 <- variogram(log(zinc)~1, ~x+y, meuse)
fit.variogram(vgm1, vgm(1,"Sph",300,1))

Run the code above in your browser using DataLab