## show difference in parameterizations
### example 1, sequence with a strong trend ###
# two parameterizations usually yield similar Akaike weights under these conditions
x1<- sim.GRW(ns=10, ms=1, vs=0.5)
res1AD<- fit3models(x1, method='AD')
res1Joint<- fit3models(x1, method='Joint')
## example 2, longer & noisy directional walk
## joint parameterization often is better at correctly favoring GRW under these conditions
x2<- sim.GRW(ns=20, ms=0.2, vs=0.1) # step variance relatively low compared to sampling error == Noisy
res2AD<- fit3models(x2, method='AD')
res2Joint<- fit3models(x2, method='Joint')
Run the code above in your browser using DataLab