fitrfh(y, x, samplingVar, ...)
fitrsfh(y, x, samplingVar, W, x0Var = c(0.01, 1), ...)
fitrtfh(y, x, samplingVar, nTime, x0Var = c(0.01, 1, 1), ...)
fitrstfh(y, x, samplingVar, W, nTime, x0Var = c(0.01, 0.01, 1, 1), ...)
fitGenericModel(y, x, matVFun, fixedPointParam, k = 1.345, K = getK(k), x0Coef = NULL, x0Var = 1, x0Re = NULL, tol = 1e-06, maxIter = 100, maxIterParam = 10, maxIterRe = 100, convCrit = convCritRelative(tol), ...)
"rfh"(formula, data, samplingVar, correlation = NULL, ...)
"rfh"(formula, data, samplingVar, correlation = NULL, ...)
"rfh"(formula, data, samplingVar, correlation = NULL, ...)
"rfh"(formula, data, samplingVar, correlation = NULL, ...)fitGenericModelfitrfh implements the robust Fay-Herriot model; fitrsfh the
spatial, fitrtfh the temporal, and fitrstfh the spatio-temporal
extension to this model type. See rfh how to fit such models.
fitGenericModel is used by all these implementations and can be used
for possible extensions of the framework.
data(milk, package = "sae")
x <- matrix(1, nrow = NROW(milk))
y <- milk$yi
samplingVar <- milk$SD^2
fitrfh(y, x, samplingVar)
Run the code above in your browser using DataLab