Learn R Programming

dexter (version 0.8.5)

fit_enorm: Fit the extended nominal response model

Description

Fits an Extended NOminal Response Model (ENORM) using conditional maximum likelihood (CML) or a Gibbs sampler for Bayesian estimation.

Usage

fit_enorm(dataSrc, predicate = NULL, fixed_params = NULL,
  method = c("CML", "Bayes"), nIterations = 500)

Arguments

dataSrc

Data source: a dexter project db handle or a data.frame with columns: person_id, item_id, item_score

predicate

An optional expression to subset data, if NULL all data is used

fixed_params

Optionally, a prms object from a previous analysis or a data.frame with columns: item_id, item_score (omitting 0 score category) and beta. To facilitate the user in entering parameter values, we assume the parameterisation used by OPLM; in short, beta's are thresholds between categories. At this moment, it is not possible to fix some but not all categories of an item.

method

If CML, the estimation method will be Conditional Maximum Likelihood; otherwise, a Gibbs sampler will be used to produce a sample from the posterior

nIterations

Number of Gibbs samples when estimation method is Bayes. The maximum number of iterations when using CML.

Value

An object of type prms. The prms object can be cast to a data.frame of item parameters using function `coef` or used directly as input for other Dexter functions.

References

Maris, G., Bechger, T.M. and San-Martin, E. (2015) A Gibbs sampler for the (extended) marginal Rasch model. Psychometrika. 2015; 80(4): 859<U+2013>879.

See Also

functions that accept a prms object as input: ability, plausible_values, plot.prms