# NOT RUN {
data(Senn2013)
# }
# NOT RUN {
#
# Fixed effect model (default)
#
net1 <- netmeta(TE, seTE, treat1, treat2, studlab,
                data=Senn2013, sm="MD")
forest(net1, ref="plac")
forest(net1, xlim=c(-1.5,1), ref="plac",
       xlab="HbA1c difference", rightcols=FALSE)
# }
# NOT RUN {
#
# Random effects effect model
#
net2 <- netmeta(TE, seTE, treat1, treat2, studlab,
                data=Senn2013, sm="MD", comb.random=TRUE)
forest(net2, xlim=c(-1.5,1), ref="plac",
       xlab="HbA1c difference")
# }
# NOT RUN {
#
# Add column with P-Scores on right side of forest plot
#
forest(net2, xlim=c(-1.5,1), ref="plac",
       xlab="HbA1c difference",
       rightcols=c("effect", "ci", "Pscore"),
       rightlabs="P-Score",
       just.addcols="right")
#
# Add column with P-Scores on left side of forest plot
#
forest(net2, xlim=c(-1.5,1), ref="plac",
       xlab="HbA1c difference",
       leftcols=c("studlab", "Pscore"),
       leftlabs=c("Treatment", "P-Score"),
       just.addcols="right")
#
# Sort forest plot by descending P-Score
#
forest(net2, xlim=c(-1.5,1), ref="plac",
       xlab="HbA1c difference",
       rightcols=c("effect", "ci", "Pscore"),
       rightlabs="P-Score",
       just.addcols="right",
       sortvar=-Pscore)
#
# Drop reference group and sort by and print number of studies
# with direct treatment comparisons
#
forest(net2, xlim=c(-1.5,1), ref="plac",
       xlab="HbA1c difference",
       leftcols=c("studlab", "k"),
       leftlabs=c("Contrast\nto Placebo", "Direct\nComparisons"),
       sortvar=-k,
       drop=TRUE,
       smlab="Random Effects Model")
# }
Run the code above in your browser using DataLab