### Shared model ###
data(kidney)
frailtyPenal(Surv(time,status)~cluster(id)+sex+age,
n.knots=12,kappa1=10000,data=kidney,Frailty=TRUE)
### COX proportional hazard model (SHARED without frailties) ###
### estimated with penalized likelihood ###
frailtyPenal(Surv(time,status)~sex+age,
n.knots=12,kappa1=10000,data=kidney,Frailty=FALSE)
### Shared model with truncated data ###
# Here is created a hypothetical truncated data
kidney$tt0<-rep(0,nrow(kidney))
kidney$tt0[1:3]<-c(2,9,13)
# then, we fit the model
frailtyPenal(Surv(tt0,time,status)~sex+age+cluster(id),
n.knots=12,kappa1=10000,data=kidney,Frailty=TRUE)
### Shared model - stratified analysis ###
data(readmission)
frailtyPenal(Surv(time,event)~cluster(id)+dukes+strata(sex),
n.knots=10,kappa1=10000,kappa2=10000,data=readmission,
Frailty=TRUE)
### Shared model - recurrentAG=TRUE ###
frailtyPenal(Surv(t.start,t.stop,event)~cluster(id)+sex+dukes+
charlson,data=readmission,Frailty=TRUE,
n.knots=6,kappa1=100000,recurrentAG=TRUE)
### Shared model - cross.validation=TRUE ###
frailtyPenal(Surv(t.start,t.stop,event)~cluster(id)+sex+dukes+
charlson,data=readmission, Frailty=TRUE,n.knots=6,
kappa1=5000,recurrentAG=TRUE,cross.validation=TRUE)
### Shared model - log-normal distribution ###
frailtyPenal(Surv(t.start,t.stop,event)~sex+dukes+charlson+cluster(id),
data=readmission, Frailty=TRUE,n.knots=6,kappa1=5000,
recurrentAG=TRUE,RandDist="LogN")Run the code above in your browser using DataLab