mod <- mirt(Science, 1)
tabscores <- fscores(mod)
head(tabscores)
fullscores <- fscores(mod, full.scores = TRUE)
fullscores_with_SE <- fscores(mod, full.scores = TRUE, full.scores.SE=TRUE)
head(fullscores)
head(fullscores_with_SE)
#chage method argument to use MAP estimates
fullscores <- fscores(mod, full.scores = TRUE, method='MAP')
head(fullscores)
#calculate MAP for a given response vector
fscores(mod, method='MAP', response.pattern = c(1,2,3,4))
#or matrix
fscores(mod, method='MAP', response.pattern = rbind(c(1,2,3,4), c(2,2,1,3)))
#use custom latent variable properties (diffuse prior for MAP is very close to ML)
fscores(mod, method='MAP', cov = matrix(1000))
fscores(mod, method='ML')
#WLE estimation, run in parallel using available cores
mirtCluster()
fscores(mod, method='WLE')
#multiple imputation using 30 draws for EAP scores. Requires information matrix
mod <- mirt(Science, 1, SE=TRUE)
fscores(mod, MI = 30)
Run the code above in your browser using DataLab