PCA trains a model to project vectors to a lower dimensional space of the top k principal components.
ft_pca(x, input_col = NULL, output_col = NULL, k = NULL,
  uid = random_string("pca_"), ...)ml_pca(x, features = tbl_vars(x), k = length(features),
  pc_prefix = "PC", ...)
A spark_connection, ml_pipeline, or a tbl_spark.
The name of the input column.
The name of the output column.
The number of principal components
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
The columns to use in the principal components
analysis. Defaults to all columns in x.
Length-one character vector used to prepend names of components.
The object returned depends on the class of x.
spark_connection: When x is a spark_connection, the function returns a ml_transformer,
  a ml_estimator, or one of their subclasses. The object contains a pointer to
  a Spark Transformer or Estimator object and can be used to compose
  Pipeline objects.
ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with
  the transformer or estimator appended to the pipeline.
tbl_spark: When x is a tbl_spark, a transformer is constructed then
  immediately applied to the input tbl_spark, returning a tbl_spark
In the case where x is a tbl_spark, the estimator fits against x
  to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.
ml_pca() is a wrapper around ft_pca() that returns a
  ml_model.
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer,
  ft_bucketizer,
  ft_chisq_selector,
  ft_count_vectorizer, ft_dct,
  ft_elementwise_product,
  ft_feature_hasher,
  ft_hashing_tf, ft_idf,
  ft_imputer,
  ft_index_to_string,
  ft_interaction, ft_lsh,
  ft_max_abs_scaler,
  ft_min_max_scaler, ft_ngram,
  ft_normalizer,
  ft_one_hot_encoder_estimator,
  ft_one_hot_encoder,
  ft_polynomial_expansion,
  ft_quantile_discretizer,
  ft_r_formula,
  ft_regex_tokenizer,
  ft_sql_transformer,
  ft_standard_scaler,
  ft_stop_words_remover,
  ft_string_indexer,
  ft_tokenizer,
  ft_vector_assembler,
  ft_vector_indexer,
  ft_vector_slicer, ft_word2vec
# NOT RUN {
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl %>%
  select(-Species) %>%
  ml_pca(k = 2)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab