Learn R Programming

radiant (version 0.1.95)

full_factor: Factor analysis (PCA)

Description

Factor analysis (PCA)

Usage

full_factor(dataset, ff_var, data_filter = "", ff_meth = "PCA", ff_number = 2, ff_rotation = "varimax")

Arguments

dataset
Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
ff_var
Variables to include in the analysis
data_filter
Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
ff_meth
Factor extraction method to use
ff_number
Number of factors to extract
ff_rotation
Apply varimax rotation or no rotation ("varimax" or "none")

Value

A list with all variables defined in the function as an object of class full_factor

Details

See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant

See Also

summary.full_factor to summarize results

plot.full_factor to plot results

Examples

Run this code
result <- full_factor("diamonds",c("price","carat","table","x","y"))
result <- full_factor("diamonds",c("price","carat","table","x","y"), ff_meth = "maxlik")
summary(result)

Run the code above in your browser using DataLab