# NOT RUN {
# Define parameters:
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K ) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
# Simulate the functional data
z <- gmfd_simulate( n, m1, rho = rho, theta = theta )
# Extract two rows of the functional data
x <- funData( t, z[1, ] )
y <- funData( t, z[2, ] )
lambda <- eigen(cov(z))$values
phi <- eigen(cov(z))$vectors
d <- funDist( x, y, metric = "mahalanobis", p = 1, lambda = lambda, phi = phi )
# }
Run the code above in your browser using DataLab