gControl: 
  Control parameters for using Zellner's g-prior in ScanBMA 
Description
  Assigns default control parameters for the use of Zellner's g-prior in
  ScanBMA, and allows setting control parameter values.
Usage
gControl( optimize = TRUE, optMethod = "perTarget", g0 = NULL, iterlim = 100, epsilon = 0.1 )
Arguments
optimize
      A logical value indicating whether to optimze g using an iterative
      EM algorithm or use a fixed value of g.
    
optMethod
      A character string indicating how to optimize g. Currently, only
      perTarget is supported, indicating that g should be optimized
      individually for each target.
    
g0
      An initial value of g to use if optimize is TRUE, or the fixed
      value to use without optimization.
    
iterlim
     If optimize is TRUE, the maximum number of iterations of the EM
     algorithm to use. Ignored otherwise.
   
epsilon
     If optimize is TRUE, the precision with which to find g using the
     EM algorithm. Ignored otherwise.
   
Value
    A list of values for the named control parameters to be passed 
    to ScanBMAcontrol and ScanBMA.
References
A. Zellner (1986), On assessing prior distributions and Bayesian
  regression analysis with g-prior distributions, Bayesian inference and
  decision techniques: Essays in Honor of Bruno De Finetti, 6:233-243. M. Clyde and E.I. George (2004), Model Uncertainty, Statistical
  Science, 81-94.Examples
Run this codedata(dream4)
network <- 1
nTimePoints <- length(unique(dream4ts10[[network]]$time))
edges1ts10 <- networkBMA( data = dream4ts10[[network]][,-(1:2)], 
                          nTimePoints = nTimePoints,
                          control = ScanBMAcontrol(gCtrl =
                          gControl(optimize = TRUE)) )
Run the code above in your browser using DataLab