Learn R Programming

AgroReg

Package: AgroReg

Type: Package

Title: Regression Analysis Linear and Nonlinear for Agriculture

Version: 1.2.3

Date: 2022-05-04

Authors: Gabriel Danilo Shimizu & Leandro Simoes Azeredo Goncalves

Maintainer: Gabriel Danilo Shimizu shimizu@uel.br

Description: Linear and nonlinear regression analysis common in agricultural science articles (Archontoulis & Miguez (2015). doi:10.2134/agronj2012.0506). The package includes polynomial, exponential, gaussian, logistic, logarithmic, segmented, non-parametric models, among others. The functions return the model coefficients and their respective p values, coefficient of determination, root mean square error, AIC, BIC, as well as graphs with the equations automatically.

License: GPL (>= 2)

Imports: drc, ggplot2, boot, minpack.lm, dplyr, rcompanion, broom, egg

Depends: R (>= 3.6)

Encoding: UTF-8

LazyData: true

RoxygenNote: 7.1.2

Installation

# Install release version from CRAN
install.packages("AgroReg")

# Install development version from GitHub
devtools::install_github("https://github.com/AgronomiaR/AgroReg.git")

Copy Link

Version

Install

install.packages('AgroReg')

Monthly Downloads

436

Version

1.2.11

License

GPL (>= 2)

Maintainer

Gabriel Danilo Shimizu

Last Published

July 1st, 2025

Functions in AgroReg (1.2.11)

VB

Analysis: Von Bertalanffy
LOG

Analysis: Logarithmic
LOG2

Analysis: Logarithmic quadratic
LM_i

Analysis: Linear, quadratic, quadratic inverse, cubic and quartic without intercept
VG

Analysis: Vega-Galvez
Nreg

Analysis: Graph for not significant trend
MM

Analysis: Michaelis-Menten
asymptotic_neg

Analysis: Asymptotic or Exponential Negative
beta_reg

Analysis: Beta
adjust_scale_x

Utils: Adjust x scale
LM23i

Analysis: Cubic inverse without beta1
asymptotic

Analysis: Asymptotic, exponential or Logarithmic
aristolochia

Dataset: Aristolochia
gaussianreg

Analysis: Analogous to the Gaussian model/Bragg
adjust_scale_y

Utils: Adjust y scale
extract.model

Analysis: Extract models
adjust_scale

Utils: Adjust y and x scale
correlation

Graph: Plot correlation
comparative_model

Analysis: Comparative models
linear.linear

Analysis: Linear-Linear
interval.confidence

Analysis: Interval of confidence
peleg

Analysis: Peleg
plateau.linear

Analysis: Plateau-Linear
mitscherlich

Analysis: Mitscherlich
newton

Analysis: Newton
coloredit_arrange

Change the colors of a graph from the plot_arrange function
linear.plateau

Analysis: Linear-Plateau
loessreg

Analysis: loess regression (degree 0, 1 or 2)
biexponential

Analysis: Biexponential
midilli

Analysis: Midilli
midillim

Analysis: Modified Midilli
plateau.quadratic

Analysis: Plateau-quadratic
plot_arrange

Merge multiple curves into a single graph
asymptotic_ineg

Analysis: Asymptotic or Exponential Negative without intercept
hill

Analysis: Hill
logistic

Analysis: Logistic
granada

Dataset: Granada
asymptotic_i

Analysis: Asymptotic without intercept
lorentz

Analysis: Lorentz
weibull

Analysis: Weibull
yieldloss

Analysis: Yield-loss
regression

Analysis: Regression linear or nonlinear
stat_param

Analysis: Other statistical parameters
potential

Analysis: Potencial
thompson

Analysis: Thompson
quadratic.plateau

Analysis: Quadratic-plateau
valcam

Analysis: Valcam
BC

Analysis: Brain-Cousens
CD

Analysis: Cedergreen-Ritz-Streibig
LL

Analysis: Log-logistic
LM

Analysis: Linear, quadratic, quadratic inverse, cubic and quartic
PAGE

Analysis: Page
SH

Analysis: Steinhart-Hart
AM

Analysis: Avhad and Marchetti
GP

Analysis: Gompertz
LM13

Analysis: Cubic without beta2
AgroReg-package

AgroReg: Regression Analysis Linear and Nonlinear for Agriculture
LM23

Analysis: Cubic without beta1
LM13i

Analysis: Cubic inverse without beta2
LM2i3

Analysis: Cubic without beta1, with inverse beta3