ClusterLongData or LongData .gald(nbEachClusters=c(50,50,50),time=0:10,varNames=c("V1","V2"),
functionClusters=list(function(t){c(0,0)},function(t){c(10,10)},function(t){c(10-t,10-t)}),
functionNoise=function(t){c(rnorm(1,0,3),rnorm(1,0,3))},
decimal=2,percentOfMissing=0,clusterLD=TRUE)
generateArtificialLongData(nbEachClusters=c(50,50,50),time=0:10,varNames=c("V1","V2"),
functionClusters=list(function(t){c(0,0)},function(t){c(10,10)},function(t){c(10-t,10-t)}),
functionNoise=function(t){c(rnorm(1,0,3),rnorm(1,0,3))},
decimal=2,percentOfMissing=0,clusterLD=TRUE)[vector(numeric)]: number of trajectories that each
cluster must contain.[vector(numeric)]: time at which measures are made.[vector(character)]: names of the variables.[vector(numeric) <- function(t)] or
[list(vector(numeric <- function(t))]: lists the functions
defining the average trajectories of each cluster.
The function shall return a value for each variable of varName[vector(numeric) <- function(t)] or
[list(vector(numeric <- function(t))]: lists the functions
generating the noise of each trajectory within its own cluster.
The function shall return a value for each variable of [numeric]: number of decimals used to round up values.[numeric]: percentage (between 0 and 1)
of missing data generated in each cluster. If a single value is
given, it is duplicated for all groups (see detail).[logical]: if TRUE, the function
create an object ClusterLongData . If
FALSE, it create an object LongData .LongData or
ClusterLongData , according to clusterLD.generateArtificialLongData (gald in short) is a
function that contruct a set of artificial joint longitudinal data.
Each individual is considered as belonging to a group. This group
follows a theoretical trajectory, function of time.
These functions (one per group) are given via the argument functionClusters.
Within a group, the individual undergoes individal
variations. Individual variations are given via the argument functionNoise.
The number of individuals in each group is given by nbEachClusters.
Finally, it is possible to add missing values randomly striking the
data thanks to percentOfMissing.### Default example
ex1 <- generateArtificialLongData()
ex1
kml3d(ex1,3,1)
plot3d(ex1)Run the code above in your browser using DataLab