gausspr is an implementation of Gaussian processes
for classification and regression.## S3 method for class 'formula':
gausspr(x, data=NULL, ..., subset, na.action = na.omit)## S3 method for class 'vector':
gausspr(x,...)
## S3 method for class 'matrix':
gausspr(x, y, type="classification", kernel="rbfdot", kpar=list(sigma = 0.1),
var=1, tol=0.001, cross=0, fit=TRUE, ... , subset, na.action = na.omit)
x. Can be either
a factor (for classification tasks) or a numeric vector (for
regression).sigmainverse kernel width for the Radial BNAs are
found. The default action is na.omit, which leads to rejection of cases
with missing values on any required variable. An alternative
is na.fail<rvm, ksvm# train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)
# predict on the training set
predict(test,iris[,-5])
# create regression data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.03)
# regression with gaussian processes
foo <- gausspr(x, y)
foo
# predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")Run the code above in your browser using DataLab