gausspr
is an implementation of Gaussian processes
for classification and regression.## S3 method for class 'formula':
gausspr(x, data=NULL, ..., subset, na.action = na.omit)## S3 method for class 'vector':
gausspr(x,...)
## S3 method for class 'matrix':
gausspr(x, y, type="classification", kernel="rbfdot", kpar=list(sigma = 0.1),
var=1, tol=0.001, cross=0, fit=TRUE, ... , subset, na.action = na.omit)
x
. Can be either
a factor (for classification tasks) or a numeric vector (for
regression).sigma
inverse kernel width for the Radial BNA
s are
found. The default action is na.omit
, which leads to rejection of cases
with missing values on any required variable. An alternative
is na.fail<
rvm
, ksvm
# train model
data(iris)
test <- gausspr(Species~.,data=iris,var=2)
test
alpha(test)
# predict on the training set
predict(test,iris[,-5])
# create regression data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.03)
# regression with gaussian processes
foo <- gausspr(x, y)
foo
# predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")
Run the code above in your browser using DataLab