Last chance! 50% off unlimited learning
Sale ends in
gdina.dif(object)
## S3 method for class 'gdina.dif':
summary(object, \dots)
gdina
p.holm
in
output difstats
).
In the case of two groups, an effect size of differential item functioning
(labeled as UA
(unsigned area) in difstats
value) is defined as
the weighted absolute difference of item response functions. The DIF measure
for item $j$ is defined as
#############################################################################
# SIMULATED EXAMPLE 1: DIF for DINA simulated data
#############################################################################
# simulate some data
set.seed(976)
N <- 2000 # number of persons in a group
I <- 9 # number of items
q.matrix <- matrix( 0 , 9,2 )
q.matrix[1:3,1] <- 1
q.matrix[4:6,2] <- 1
q.matrix[7:9,c(1,2)] <- 1
# simulate first group
guess <- rep( .2 , I )
slip <- rep(.1, I)
dat1 <- sim.din( N=N , q.matrix=q.matrix , guess=guess , slip=slip , mean=c(0,0) )$dat
# simulate second group with some DIF items (items 1, 7 and 8)
guess[ c(1,7)] <- c(.3 , .35 )
slip[8] <- .25
dat2 <- sim.din( N=N , q.matrix=q.matrix , guess=guess , slip=slip , mean=c(0.4,.25) )$dat
group <- rep(1:2 , each=N )
dat <- rbind( dat1 , dat2 )
#*** estimate multiple group GDINA model
mod1 <- gdina( dat , q.matrix=q.matrix , rule="DINA" , group=group )
summary(mod1)
#*** assess differential item functioning
dmod1 <- gdina.dif( mod1)
summary(dmod1)
## item X2 df p p.holm UA
## 1 I001 10.1711 2 0.0062 0.0495 0.0428
## 2 I002 1.9933 2 0.3691 1.0000 0.0276
## 3 I003 0.0313 2 0.9845 1.0000 0.0040
## 4 I004 0.0290 2 0.9856 1.0000 0.0044
## 5 I005 2.3230 2 0.3130 1.0000 0.0142
## 6 I006 1.8330 2 0.3999 1.0000 0.0159
## 7 I007 40.6851 2 0.0000 0.0000 0.1184
## 8 I008 6.7912 2 0.0335 0.2346 0.0710
## 9 I009 1.1538 2 0.5616 1.0000 0.0180
Run the code above in your browser using DataLab