gefp(..., fit = glm, scores = estfun, vcov = NULL,
decorrelate = TRUE, sandwich = TRUE, order.by = NULL,
fitArgs = NULL, parm = NULL, data = list())data to the fit function: fm <- fit(..., data = data).
If fit is set to NULL the first argument ...
is ascores(fm).vcov(fm, order.by = order.by, data = data).vcov the full sandwich
estimator or only the meat?z or a formula with a single explanatory
variable like ~ z. The observations in the model
are ordered by the size of z. If set to NULL (the
default) the observations are assumfit function. Usually, this is not needed and ...
will be sufficient to pass arguments to fit....
specification and the order.by model. By default the variables are
taken from the environment which gefp is called from.gefp returns a list of class "gefp" with components including:"zoo",Zeileis A. (2006), Implementing a Class of Structural Change Tests: An Econometric Computing Approach. Computational Statistics & Data Analysis, 50, 2987--3008. doi:10.1016/j.csda.2005.07.001.
Zeileis A., Hornik K. (2007), Generalized M-Fluctuation Tests for Parameter Instability, Statistica Neerlandica, 61, 488--508. doi:10.1111/j.1467-9574.2007.00371.x.
Zeileis A., Shah A., Patnaik I. (2010), Testing, Monitoring, and Dating Structural Changes in Exchange Rate Regimes, Computational Statistics and Data Analysis, Forthcoming. doi:10.1016/j.csda.2009.12.005.
efp, efpFunctionaldata("BostonHomicide")
gcus <- gefp(homicides ~ 1, family = poisson, vcov = kernHAC,
data = BostonHomicide)
plot(gcus, aggregate = FALSE)
gcus
sctest(gcus)Run the code above in your browser using DataLab