Learn R Programming

gap (version 1.1-16)

genecounting: Gene counting for haplotype analysis

Description

Gene counting for haplotype analysis with missing data

Usage

genecounting(data,weight=NULL,loci=NULL,control=gc.control())

Arguments

data
genotype table
weight
a column of frequency weights
loci
an array containing number of alleles at each locus
control
is a function with the following arguments:
  1. xdata. a flag indicating if the data involves X chromosome, if so, the first column of data indicates sex of each subject: 1=male, 2=female. The marker data are no different from the autosomal version for females, but for males, two copies of the single allele present at a given locus.
  2. convll. set convergence criteria according to log-likelihood, if its value set to 1
  3. handle.miss. to handle missing data, if its value set to 1
  4. eps. the actual convergence criteria, with default value 1e-5
  5. tol. tolerance for genotype probabilities with default value 1e-8
  6. maxit. maximum number of iterations, with default value 50
  7. pl. criteria for trimming haplotypes according to posterior probabilities
  8. assignment. filename containing haplotype assignment
  9. verbose. If TRUE, yields print out from the C routine

Value

The returned value is a list containing:
h
haplotype frequency estimates under linkage disequilibrium (LD)
h0
haplotype frequency estimates under linkage equilibrium (no LD)
prob
genotype probability estimates
l0
log-likelihood under linkage equilibrium
l1
log-likelihood under linkage disequilibrium
hapid
unique haplotype identifier (defunct, see gc.em)
npusr
number of parameters according user-given alleles
npdat
number of parameters according to observed
htrtable
design matrix for haplotype trend regression (defunct, see gc.em)
iter
number of iterations used in gene counting
converge
a flag indicating convergence status of gene counting
di0
haplotype diversity under no LD, defined as $1-sum (h0^2)$
di1
haplotype diversity under LD, defined as $1-sum (h^2)$
resid
residuals in terms of frequency weights = o - e

References

Zhao, J. H., Lissarrague, S., Essioux, L. and P. C. Sham (2002). GENECOUNTING: haplotype analysis with missing genotypes. Bioinformatics 18(12):1694-1695 Zhao, J. H. and P. C. Sham (2003). Generic number systems and haplotype analysis. Comp Meth Prog Biomed 70: 1-9 Zhao, J. H. (2004). 2LD, GENECOUNTING and HAP: Computer programs for linkage disequilibrium analysis. Bioinformatics, 20, 1325-1326

See Also

gc.em, LDkl

Examples

Run this code
## Not run: 
# # HLA data
# data(hla)
# hla.gc <- genecounting(hla[,3:8])
# summary(hla.gc)
# hla.gc$l0
# hla.gc$l1
# 
# # ALDH2 data
# data(aldh2)
# control <- gc.control(handle.miss=1,assignment="ALDH2.out")
# aldh2.gc <- genecounting(aldh2[,3:6],control=control)
# summary(aldh2.gc)
# aldh2.gc$l0
# aldh2.gc$l1
# 
# # Chromosome X data
# # assuming allelic data have been extracted in columns 3-13
# # and column 3 is sex
# filespec <- system.file("tests/genecounting/mao.dat")
# mao2 <- read.table(filespec)
# dat <- mao2[,3:13]
# loci <- c(12,9,6,5,3)
# contr <- gc.control(xdata=TRUE,handle.miss=1)
# mao.gc <- genecounting(dat,loci=loci,control=contr)
# mao.gc$npusr
# mao.gc$npdat
# ## End(Not run)

Run the code above in your browser using DataLab