Last chance! 50% off unlimited learning
Sale ends in
Predict results on test data using the tuned MarkovChain mode. Result has the required data format for a submission to the Kaggle COVID-19 challenge.
generateMCPrediction(
testData,
models,
startSimulation = "2020-01-22",
write = FALSE
)
'data.frame': obs. of 3 variables:
ForecastId
int 1 2 3 4 5 6 7 8 9 10 ...
Region
Factor w/ 313 levels "Afghanistan/",..: 1 1 1 1 1 1 1 1 1 1 ...
Date
Date, format: "2020-04-02" "2020-04-03" "2020-04-04" "2020-04-05" ...
'data.frame': obs. of 7 variables:
p
num [0;1] proportion of confirmed cases
beta
num 13.8 13.8 16.3 11.5 29.2 ...
gamma
num 13.8 13.8 16.3 11.5 29.2 ...
CFR
num 0.14 0.14 0.2319 0.0312 0.0705 ...
cost
num 658 256 1207 1091 300 ...
region
chr, e.g., "Afghanistan/" "Albania/" "Algeria/" "Andorra/" ...
chr start of the simulation period, e.g., "2020-01-22". startSimulation must be at or before the Date from testData. Simulations can start earlier, because some use R=0. This enables a warm-up period.
logical. Default FALSE
. If TRUE
, results are written to the file submit.csv
.
returns data.frame with obs. of the following 3 variables:
ForecastId
int: Forecast Id taken from the regionTest
data set.
ConfirmedCases
num: Cumulative number of confirmed cases.
Fatalities
num: Cumulative number of fatalities.
Output from parseTunedRegionModel
is processed-
# NOT RUN {
require(SimInf)
data <- preprocessInputData(regionTrain, regionPopulation)
testData <- preprocessTestData(regionTest)
# Select the first region:
testData <- testData[testData$Region==levels(testData$Region)[1], ]
testData$Region <- droplevels(testData$Region)
# Very small number of function evaluations:
n <- 6
res <- lapply(data[1], tuneRegionModel, pops=NULL,
control=list(funEvals=n, designControl=list(size=5), model = buildLM))
parsedList <- parseTunedRegionModel(res)
pred <- generateMCPrediction(testData = testData, models = parsedList$models, write = FALSE)
# }
Run the code above in your browser using DataLab