get.comparison.info(x, pheno.cols = rnb.getOption("differential.comparison.columns"), region.types = rnb.region.types.for.analysis(x), pheno.cols.all.pairwise = rnb.getOption("differential.comparison.columns.all.pairwise"), columns.pairs = rnb.getOption("columns.pairing"), columns.adj = rnb.getOption("covariate.adjustment.columns"), adjust.sva = rnb.getOption("differential.adjustment.sva"), pheno.cols.adjust.sva = rnb.getOption("inference.targets.sva"), adjust.celltype = rnb.getOption("differential.adjustment.celltype"), adjust.na.rm = TRUE)RnBSet objectx on which the dataset should be partitioned. Those columns are required to be factors or logical.
In case of factors, each group in turn will be compared to all other groupspheno(x) on which all pairwise comparisons should be conducted.
A value of NULL indicates no columns.rnb.sample.groups. See its documentation for details.adjust.sva==TRUE. Only the intersection of
pheno.cols and pheno.cols.adjust.sva is considered for SVA adjustment.rnb.execute.ct.estimation for details.comparisonpheno.colnamegroup.namesgroup.indspairedadj.svaadj.celltypeadjustment.tableNULL if the comparison is not adjustedregion.types
library(RnBeads.hg19)
data(small.example.object)
logger.start(fname=NA)
cmp.info <- get.comparison.info(rnb.set.example,pheno.cols=c("Sample_Group","Treatment"))
cmp.info[[1]]
Run the code above in your browser using DataLab