# NOT RUN {
data(Ped_HSg5, SimGeno_example, package="sequoia")
PedA <- getAssignCat(Ped_HSg5, rownames(SimGeno_example))
tail(PedA)
table(PedA$dam.cat, PedA$sire.cat, useNA="ifany")
# calculate call rate
# }
# NOT RUN {
CallRates <- apply(MyGenotypes, MARGIN=1,
FUN = function(x) sum(x!=-9)) / ncol(MyGenotypes)
hist(CallRates, breaks=50, col="grey")
GoodSamples <- rownames(MyGenotypes)[ CallRates > 0.8]
# threshold depends on total number of SNPs, genotyping errors, proportion
# of candidate parents that are SNPd (sibship clustering is more prone to
# false positives).
PedA <- getAssignCat(MyOldPedigree, rownames(GoodSamples))
# }
Run the code above in your browser using DataLab