Learn R Programming

RMixtCompUtilities (version 4.1.6)

getPartition: Get the estimated class from MixtComp object

Description

Get the estimated class from MixtComp object

Usage

getPartition(outMixtComp, empiric = FALSE)

Value

a vector containing the estimated class for each individual.

Arguments

outMixtComp

object of class MixtCompLearn or MixtComp obtained using mixtCompLearn or mixtCompPredict functions from RMixtComp package or rmcMultiRun from RMixtCompIO package.

empiric

if TRUE, use the partition obtained at the end of the gibbs algorithm. If FALSE, use the partition obtained with the observed probabilities.

Author

Quentin Grimonprez

See Also

Other getter: getBIC(), getCompletedData(), getEmpiricTik(), getMixtureDensity(), getParam(), getType()

Examples

Run this code
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
  dataLearn <- list(
    var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
    var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
  )

  model <- list(
    var1 = list(type = "Gaussian", paramStr = ""),
    var2 = list(type = "Poisson", paramStr = "")
  )

  algo <- list(
    nClass = 2,
    nInd = 100,
    nbBurnInIter = 100,
    nbIter = 100,
    nbGibbsBurnInIter = 100,
    nbGibbsIter = 100,
    nInitPerClass = 3,
    nSemTry = 20,
    confidenceLevel = 0.95,
    ratioStableCriterion = 0.95,
    nStableCriterion = 10,
    mode = "learn"
  )

  resLearn <- RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)

  # get class
  estimatedClass <- getPartition(resLearn)
}

Run the code above in your browser using DataLab