#dataPath <- file.path("C:", "Documents and Settings", "c.maumet", "My Documents", "Programmation", "Sources", "SVN", "R package", "data")
#aDataset <- new("dataset", dataId="vantVeer_70", dataPath=dataPath)
#aDataset <- loadData(aDataset)
data('vV70genesDataset')
mySubsets <- new("geneSubsets", optionValues=c(1,2,4,8,16,32,64,70))
myassessment <- new("assessment", dataset=vV70genes,
noFolds1stLayer=5,
noFolds2ndLayer=4,
classifierName="svm",
typeFoldCreation="original",
svmKernel="linear",
noOfRepeat=2,
featureSelectionOptions=mySubsets)
myassessment <- runOneLayerExtCV(myassessment)
myassessment <- runTwoLayerExtCV(myassessment)
# --- Access to one-layer CV ---
# errorRate
# 1-layer CV: error Rates
getResults(myassessment, 1, 'errorRate')
# 1-layer CV: error Rates - all")
getResults(myassessment, 1, 'errorRate', errorType='all')
# 1-layer CV: error Rates - cv
getResults(myassessment, 1, 'errorRate', errorType='cv')
# 1-layer CV: error Rates - se
getResults(myassessment, 1, 'errorRate', errorType='se')
# 1-layer CV: error Rates - class
getResults(myassessment, 1, 'errorRate', errorType='class')
# genesSelected
# 1-layer CV: genes Selected
getResults(myassessment, 1, 'genesSelected')
# 1-layer CV: genes Selected - frequ
getResults(myassessment, 1, 'genesSelected', genesType='frequ')
# 1-layer CV: genes Selected - model 7
getResults(myassessment, 1, 'genesSelected', genesType='frequ')[[7]]
getResults(myassessment, 1, 'genesSelected')[[7]]
# bestOptionValue
# 1-layer CV: best number of genes
getResults(myassessment, 1, 'bestOptionValue')
# executionTime
# 1-layer CV: execution time
getResults(myassessment, 1, 'executionTime')
# --- Access to 2nd repeat of one-layer CV ---
# Error rates
# 1-layer CV repeat 2: error Rates
getResults(myassessment, c(1,2), 'errorRate')
# 1-layer CV repeat 2: error Rates - all
getResults(myassessment, c(1,2), 'errorRate', errorType='all')
# 1-layer CV repeat 2: error Rates - cv
getResults(myassessment, c(1,2), 'errorRate', errorType='cv')
# 1-layer CV repeat 2: error Rates - se
getResults(myassessment, c(1,2), 'errorRate', errorType='se')
# 1-layer CV repeat 2: error Rates - fold
getResults(myassessment, c(1,2), 'errorRate', errorType='fold')
# 1-layer CV repeat 2: error Rates - noSamplesPerFold
getResults(myassessment, c(1,2), 'errorRate', errorType='noSamplesPerFold')
# 1-layer CV repeat 2: error Rates - class
getResults(myassessment, c(1,2), 'errorRate', errorType='class')
# genesSelected
# 1-layer CV repeat 2: genes Selected
getResults(myassessment, c(1,2), 'genesSelected')
# 1-layer CV repeat 2: genes Selected - frequ
getResults(myassessment, c(1,2), 'genesSelected', genesType='frequ')
# 1-layer CV repeat 2: genes Selected - model 7 (twice)
getResults(myassessment, c(1,2), 'genesSelected', genesType='frequ')[[7]]
getResults(myassessment, c(1,2), 'genesSelected')[[7]]
# 1-layer CV repeat 2: genes Selected - fold
getResults(myassessment, c(1,2), 'genesSelected', genesType='fold')
# 1-layer CV repeat 2: best number of genes
getResults(myassessment, c(1,2), 'bestOptionValue')
# 1-layer CV repeat 2: execution time
getResults(myassessment, c(1,2), 'executionTime')
# --- Access to two-layers CV ---
# Error rates
# 2-layer CV: error Rates
getResults(myassessment, 2, 'errorRate')
# 2-layer CV: error Rates - all
getResults(myassessment, 2, 'errorRate', errorType='all')
# 2-layer CV: error Rates - cv
getResults(myassessment, 2, 'errorRate', errorType='cv')
# 2-layer CV: error Rates - se
getResults(myassessment, 2, 'errorRate', errorType='se')
# 2-layer CV: error Rates - class
getResults(myassessment, 2, 'errorRate', errorType='class')
# bestOptionValue
# 2-layer CV: best number of genes (avg)
getResults(myassessment, 2, 'bestOptionValue')
# executionTime
# 2-layer CV: execution time
getResults(myassessment, 2, 'executionTime')
# --- Access to two-layers CV access to repeats ---
# Error rates
# 2-layer CV repeat 1: error Rates
getResults(myassessment, c(2,1), 'errorRate')
# 2-layer CV repeat 1: error Rates - all
getResults(myassessment, c(2,1), 'errorRate', errorType='all')
# 2-layer CV repeat 1: error Rates - cv
getResults(myassessment, c(2,1), 'errorRate', errorType='cv')
# 2-layer CV repeat 1: error Rates - se
getResults(myassessment, c(2,1), 'errorRate', errorType='se')
# 2-layer CV repeat 1: error Rates - fold
getResults(myassessment, c(2,1), 'errorRate', errorType='fold')
# 2-layer CV repeat 1: error Rates - noSamplesPerFold
getResults(myassessment, c(2,1), 'errorRate', errorType='noSamplesPerFold')
# 2-layer CV repeat 1: error Rates - class
getResults(myassessment, c(2,1), 'errorRate', errorType='class')
# genesSelected
# 2-layer CV repeat 1: genes Selected
getResults(myassessment, c(2,1), 'genesSelected')
# 2-layer CV repeat 1: genes Selected - fold
getResults(myassessment, c(2,1), 'genesSelected', genesType='fold')
# 2-layer CV repeat 1: best number of genes
getResults(myassessment, c(2,1), 'bestOptionValue')
# 2-layer CV repeat 1: execution time
getResults(myassessment, c(2,1), 'executionTime')
# --- Access to one-layer CV inside two-layers CV ---
# errorRate
# 2-layer CV repeat 1 inner layer 3: error Rates
getResults(myassessment, c(2,1,3), 'errorRate')
# 2-layer CV repeat 1 inner layer 3: error Rates - all
getResults(myassessment, c(2,1,3), 'errorRate', errorType='all')
# 2-layer CV repeat 1 inner layer 3: error Rates - cv
getResults(myassessment, c(2,1,3), 'errorRate', errorType='cv')
# 2-layer CV repeat 1 inner layer 3: error Rates - se
getResults(myassessment, c(2,1,3), 'errorRate', errorType='se')
# 2-layer CV repeat 1 inner layer 3: error Rates - class
getResults(myassessment, c(2,1,3), 'errorRate', errorType='class')
# genesSelected
# 2-layer CV repeat 1 inner layer 3: genes Selected
getResults(myassessment, c(2,1,3), 'genesSelected')
# 2-layer CV repeat 1 inner layer 3: genes Selected - frequ
getResults(myassessment, c(2,1,3), 'genesSelected', genesType='frequ')
# 2-layer CV repeat 1 inner layer 3: genes Selected - model 7
getResults(myassessment, c(2,1,3), 'genesSelected', genesType='frequ')[[7]]
getResults(myassessment, c(2,1,3), 'genesSelected')[[7]]
# bestOptionValue
# 2-layer CV repeat 1 inner layer 3: best number of genes
getResults(myassessment, c(2,1,3), 'bestOptionValue')
# executionTime
# 2-layer CV repeat 1 inner layer 3: execution time
getResults(myassessment, c(2,1,3), 'executionTime')
# --- two-layers CV access to repeat 1, inner layer 2 repeat 2 ---
# Error rates
# 2-layer CV inner layer 3 repeat 2: error Rates
getResults(myassessment, c(2,1,3,1), 'errorRate')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - all
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='all')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - cv
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='cv')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - se
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='se')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - class
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='class')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - fold
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='fold')
# 2-layer CV repeat 1 inner layer 3 repeat 1: error Rates - noSamplesPerFold
getResults(myassessment, c(2,1,3,1), 'errorRate', errorType='noSamplesPerFold')
# genesSelected
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected
getResults(myassessment, c(2,1,3,1), 'genesSelected')
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected - fold
getResults(myassessment, c(2,1,3,1), 'genesSelected', genesType='fold')
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected - model 3 fold 1(twice)
getResults(myassessment, c(2,1,3,1), 'genesSelected', genesType='fold')[[3]][[1]]
# 2-layer CV repeat 1 inner layer 3 repeat 1: genes Selected frequ - model 3
getResults(myassessment, c(2,1,3,1), 'genesSelected')[[3]]
# 2-layer CV repeat 1 inner layer 3 repeat 1: best number of genes
getResults(myassessment, c(2,1,3,1), 'bestOptionValue')
# 2-layer CV repeat 1 inner layer 3 repeat 1: execution time
getResults(myassessment, c(2,1,3,1), 'executionTime')
Run the code above in your browser using DataLab