# NOT RUN {
# Assess different selection rules for a two-stage survival design with
# O'Brien & Fleming alpha spending boundaries and (non-binding) stopping
# for futility if the test statistic is negative.
# Number of events at the second stage is adjusted based on conditional
# power 80% and specified minimum and maximum number of Events.
maxNumberOfIterations <- 50
design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = 0)
y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best", conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))
y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon", epsilonValue = 0.2,
effectMeasure = "effectEstimate",
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = maxNumberOfIterations,
plannedEvents = c(75, 120))
y1$effectMatrix
y1$rejectAtLeastOne
y2$rejectAtLeastOne
y1$selectedArms
y2$selectedArms
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab