getType returns the type output of a MixtComp object, getModel returns the model object, getVarNames returns the name for each variable
getType(outMixtComp, with.z_class = FALSE)getModel(outMixtComp, with.z_class = FALSE)
getVarNames(outMixtComp, with.z_class = FALSE)
a vector containing the type of models, names associated with each individual.
object of class MixtCompLearn or MixtComp obtained using mixtCompLearn
or
mixtCompPredict
functions from RMixtComp
package or rmcMultiRun
from RMixtCompIO
package.
if TRUE, the type of z_class is returned.
Quentin Grimonprez
Other getter:
getBIC()
,
getCompletedData()
,
getEmpiricTik()
,
getMixtureDensity()
,
getParam()
,
getPartition()
if (requireNamespace("RMixtCompIO", quietly = TRUE)) {
dataLearn <- list(
var1 = as.character(c(rnorm(50, -2, 0.8), rnorm(50, 2, 0.8))),
var2 = as.character(c(rnorm(50, 2), rpois(50, 8)))
)
model <- list(
var1 = list(type = "Gaussian", paramStr = ""),
var2 = list(type = "Poisson", paramStr = "")
)
algo <- list(
nClass = 2,
nInd = 100,
nbBurnInIter = 100,
nbIter = 100,
nbGibbsBurnInIter = 100,
nbGibbsIter = 100,
nInitPerClass = 3,
nSemTry = 20,
confidenceLevel = 0.95,
ratioStableCriterion = 0.95,
nStableCriterion = 10,
mode = "learn"
)
resLearn <-RMixtCompIO::rmcMultiRun(algo, dataLearn, model, nRun = 3)
# get type
type <- getType(resLearn)
# get model object
model <- getModel(resLearn)
# get variable names
varNames <- getVarNames(resLearn)
}
Run the code above in your browser using DataLab