
calc_gradient
or calc_hessian
calculates the gradient or Hessian matrix
of the given function at the given point using central difference numerical approximation.
get_gradient
(and get_foc
) or get_hessian
calculates the gradient or Hessian matrix of the
log-likelihood function at the parameter values of a class 'gsmar'
object.
get_soc
returns eigenvalues of the Hessian matrix.
calc_gradient(x, fn, h = 6e-06, varying_h = NULL, ...)calc_hessian(x, fn, h = 6e-06, varying_h = NULL, ...)
get_gradient(gsmar, custom_h = NULL)
get_foc(gsmar, custom_h = NULL)
get_hessian(gsmar, custom_h = NULL)
get_soc(gsmar, custom_h = NULL)
a numeric vector specifying the point at which the gradient or Hessian should be evaluated.
a function that takes in the argument x
as the first argument.
the difference used to approximate the derivatives.
a numeric vector with the same length as x
specifying the difference h
for each dimension separately. If NULL
(default), then the difference given as parameter h
will be used for all dimensions.
other arguments passed to fn
.
object of class 'gsmar'
created with the function fitGSMAR
or GSMAR
.
same as varying_h
but if NULL
(default), then the difference h
used for differentiating
overly large degrees of freedom parameters is adjusted to avoid numerical problems, and the difference is 6e-6
for the other
parameters.
The gradient functions return numerical approximation of the gradient, and the Hessian functions return
numerical approximation of the Hessian. get_soc
returns eigenvalues of the Hessian matrix, get_foc
is the same as get_gradient
but named conveniently.
No argument checks!
In particular, the functions get_foc
and get_soc
can be used to check whether
the found estimates denote a (local) maximum point, a saddle point, or something else.
# NOT RUN {
# Simple function
foo <- function(x) x^2 + x
calc_gradient(x=1, fn=foo)
calc_gradient(x=-0.5, fn=foo)
calc_hessian(x=2, fn=foo)
# More complicated function
foo <- function(x, a, b) a*x[1]^2 - b*x[2]^2
calc_gradient(x=c(1, 2), fn=foo, a=0.3, b=0.1)
calc_hessian(x=c(1, 2), fn=foo, a=0.3, b=0.1)
# GMAR model:
params12 <- c(0.18281409, 0.92657275, 0.00214552,
0.85725129, 0.68210294, 0.01900299, 0.88342018)
gmar12 <- GSMAR(logVIX, 1, 2, params12)
get_gradient(gmar12)
get_foc(gmar12)
get_hessian(gmar12)
get_soc(gmar12)
# }
Run the code above in your browser using DataLab