Learn R Programming

PopED (version 0.1.1)

get_rse: Compute the expected parameter relative standard errors

Description

This function computes the expected relative standard errors of a model given a design and a previously computed FIM.

Usage

get_rse(fmf, poped.db, bpop = poped.db$gbpop[, 2, drop = F],
  d = poped.db$gd[, 2, drop = F], docc = poped.db$docc,
  sigma = poped.db$sigma, use_percent = T,
  fim.calc.type = poped.db$iFIMCalculationType)

Arguments

use_percent
Should RSE be reported as percent or not?
poped.db
A PopED database.
fim.calc.type
The method used for calculating the FIM. Potential values:
  • 0 = Full FIM. No assumption that fixed and random effects are uncorrelated. Seemftot0.
  • 1 = Reduced FIM. Assume that there is no co
fmf
The initial value of the FIM. If set to zero then it is computed.
bpop
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
  • column 1 the type of the distribution for E-family designs (0 = Fixed, 1 = Normal, 2 = Uniform, 3 = User Defined Distribution, 4 = lognormal and 5 = trunca
d
Matrix defining the diagnonals of the IIV (same logic as for the fixed efects). can also just supply the parameter values as a c().
docc
Matrix defining the IOV, the IOV variances and the IOV distribution
sigma
Matrix defining the variances can covariances of the residual variability terms of the model. can also just supply the diagnonal parameter values (variances) as a c().

Value

  • A named list of RSE values.

See Also

Other evaluate_design: evaluate.fim; model_prediction; plot_efficiency_of_windows; plot_model_prediction

Examples

Run this code
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation 
##   for population pharmacokinetics-pharmacodynamics studies", 
##   Br. J. Clin. Pharm., 2014. 

library(PopED)

## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.md.CL

## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c(CL=bpop[1]*exp(b[1]),
               V=bpop[2]*exp(b[2]),
               KA=bpop[3]*exp(b[3]),
               Favail=bpop[4],
               DOSE=a[1])
    return(parameters) 
}

## -- Define initial design  and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
                                  fg_file="sfg",
                                  fError_file="feps.prop",
                                  bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), 
                                  notfixed_bpop=c(1,1,1,0),
                                  d=c(CL=0.07, V=0.02, KA=0.6), 
                                  sigma=0.01,
                                  groupsize=32,
                                  xt=c( 0.5,1,2,6,24,36,72,120),
                                  minxt=0,
                                  maxxt=120,
                                  a=70)


## evaluate initial design with the reduced FIM
FIM.1 <- evaluate.fim(poped.db) 
FIM.1
det(FIM.1)
get_rse(FIM.1,poped.db)

## evaluate initial design with the full FIM
FIM.0 <- evaluate.fim(poped.db,fim.calc.type=0) 
FIM.0
det(FIM.0)
get_rse(FIM.0,poped.db,fim.calc.type=0)

## evaluate initial design with the reduced FIM 
## computing all derivatives with respect to the 
## standard deviation of the residual unexplained variation 
FIM.4 <- evaluate.fim(poped.db,fim.calc.type=4) 
FIM.4
det(FIM.4)
get_rse(FIM.4,poped.db,fim.calc.type=4)

## evaluate initial design with the full FIM with A,B,C matricies
## should give same answer as fim.calc.type=0
FIM.5 <- evaluate.fim(poped.db,fim.calc.type=5) 
FIM.5
det(FIM.5)
get_rse(FIM.5,poped.db,fim.calc.type=5)

## evaluate initial design with the reduced FIM with 
## A,B,C matricies and derivative of variance
## should give same answer as fim.calc.type=1 (default)
FIM.7 <- evaluate.fim(poped.db,fim.calc.type=7) 
FIM.7
det(FIM.7)
get_rse(FIM.7,poped.db,fim.calc.type=7)

Run the code above in your browser using DataLab