Learn R Programming

PopED (version 0.4.0)

get_rse: Compute the expected parameter relative standard errors

Description

This function computes the expected relative standard errors of a model given a design and a previously computed FIM.

Usage

get_rse(fim, poped.db, bpop = poped.db$parameters$bpop[, 2],
  d = poped.db$parameters$d[, 2], docc = poped.db$parameters$docc,
  sigma = poped.db$parameters$sigma, use_percent = TRUE,
  prior_fim = poped.db$settings$prior_fim, ...)

Arguments

fim

A Fisher Information Matrix (FIM).

poped.db

A PopED database.

bpop

A vector containing the values of the fixed effects used to compute the fim.

d

A vector containing the values of the diagonals of the between subject variability matrix.

docc

Matrix defining the IOV, the IOV variances and the IOV distribution as for d and bpop.

sigma

Matrix defining the variances can covariances of the residual variability terms of the model. can also just supply the diagonal parameter values (variances) as a c().

use_percent

Should RSE be reported as percent?

prior_fim

A prior FIM to be added to the fim. Should be the same size as the fim.

...

Additional arguments passed to inv.

Value

A named list of RSE values. If the estimated parameter is assumed to be zero then for that parameter the standard error is returned.

See Also

Other evaluate_design: evaluate.fim, evaluate_design, evaluate_power, model_prediction, plot_efficiency_of_windows, plot_model_prediction

Examples

Run this code
# NOT RUN {
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation 
##   for population pharmacokinetics-pharmacodynamics studies", 
##   Br. J. Clin. Pharm., 2014. 

library(PopED)

## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.md.CL

## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c(CL=bpop[1]*exp(b[1]),
               V=bpop[2]*exp(b[2]),
               KA=bpop[3]*exp(b[3]),
               Favail=bpop[4],
               DOSE=a[1])
    return(parameters) 
}

## -- Define initial design  and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
                                  fg_file="sfg",
                                  fError_file="feps.prop",
                                  bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), 
                                  notfixed_bpop=c(1,1,1,0),
                                  d=c(CL=0.07, V=0.02, KA=0.6), 
                                  sigma=0.01,
                                  groupsize=32,
                                  xt=c( 0.5,1,2,6,24,36,72,120),
                                  minxt=0,
                                  maxxt=120,
                                  a=70)


## evaluate initial design with the reduced FIM
FIM.1 <- evaluate.fim(poped.db) 
FIM.1
det(FIM.1)
get_rse(FIM.1,poped.db)

## evaluate initial design with the full FIM
FIM.0 <- evaluate.fim(poped.db,fim.calc.type=0) 
FIM.0
det(FIM.0)
get_rse(FIM.0,poped.db,fim.calc.type=0)

## evaluate initial design with the reduced FIM 
## computing all derivatives with respect to the 
## standard deviation of the residual unexplained variation 
FIM.4 <- evaluate.fim(poped.db,fim.calc.type=4) 
FIM.4
det(FIM.4)
get_rse(FIM.4,poped.db,fim.calc.type=4)

## evaluate initial design with the full FIM with A,B,C matricies
## should give same answer as fim.calc.type=0
FIM.5 <- evaluate.fim(poped.db,fim.calc.type=5) 
FIM.5
det(FIM.5)
get_rse(FIM.5,poped.db,fim.calc.type=5)

## evaluate initial design with the reduced FIM with 
## A,B,C matricies and derivative of variance
## should give same answer as fim.calc.type=1 (default)
FIM.7 <- evaluate.fim(poped.db,fim.calc.type=7) 
FIM.7
det(FIM.7)
get_rse(FIM.7,poped.db,fim.calc.type=7)

## evaluate FIM and rse with prior FIM.1
poped.db.prior = create.poped.database(poped.db, prior_fim = FIM.1)
FIM.1.prior <- evaluate.fim(poped.db.prior)
all.equal(FIM.1.prior,FIM.1) # the FIM is only computed from the design in the poped.db
get_rse(FIM.1.prior,poped.db.prior) # the RSE is computed with the prior information
# }

Run the code above in your browser using DataLab